首页> 外文期刊>Journal of the American Chemical Society >Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi_2Te_3 Doping
【24h】

Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi_2Te_3 Doping

机译:Bi_2Te_3掺杂后基于GeTe的热电材料的高性能起源

获取原文
获取原文并翻译 | 示例
       

摘要

As a lead-free material, GeTe has drawn growing attention in thermoelectrics, and a figure of merit (ZT) close to unity was previously obtained via traditional doping/alloying, largely through hole carrier concentration tuning. In this report, we show that a remarkably high ZT of ~1.9 can be achieved at 773 K in Ge_(0.87)Pb_(0.13)Te upon the introduction of 3 mol % Bi_2Te_3. Bismuth telluride promotes the solubility of PbTe in the GeTe matrix, thus leading to a significantly reduced thermal conductivity. At the same time, it enhances the thermopower by activating a much higher fraction of charge transport from the highly degenerate Σ valence band, as evidenced by density functional theory calculations. These mechanisms are incorporated and discussed in a three-band (L + Σ + C) model and are found to explain the experimental results well. Analysis of the detailed microstructure (including rhombohedral twin structures) in Ge_(0.87)Pb_(0.13)Te + 3 mol % Bi_2Te_3 was carried out using transmission electron microscopy and crystallographic group theory. The complex microstructure explains the reduced lattice thermal conductivity and electrical conductivity as well.
机译:作为一种无铅材料,GeTe在热电学中引起了越来越多的关注,并且先前通过传统的掺杂/合金化(主要是通过空穴载流子浓度调整)获得了接近于单位的品质因数(ZT)。在本报告中,我们表明,引入3 mol%Bi_2Te_3后,在Ge_(0.87)Pb_(0.13)Te中的773 K处,可以实现1.9的显着高ZT。碲化铋提高了PbTe在GeTe基体中的溶解度,从而导致热导率显着降低。同时,它通过激活高度退化的价价带中更高比例的电荷传输来增强热功率,这在密度泛函理论计算中得到了证明。这些机制已纳入三频带(L +Σ+ C)模型并进行了讨论,并被发现很好地解释了实验结果。利用透射电子显微镜和晶体群理论对Ge_(0.87)Pb_(0.13)Te + 3 mol%Bi_2Te_3中的细微结构(包括菱形双晶结构)进行了分析。复杂的微观结构也解释了降低的晶格热导率和电导率。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第32期|11412-11419|共8页
  • 作者单位

    Department of Physics, South University of Science and Technology of China, Shenzhen 518055, P. R. China;

    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Physics, South University of Science and Technology of China, Shenzhen 518055, P. R. China;

    Department of Physics, South University of Science and Technology of China, Shenzhen 518055, P. R. China;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Physics, South University of Science and Technology of China, Shenzhen 518055, P. R. China;

    Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;

    Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Physics, South University of Science and Technology of China, Shenzhen 518055, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号