...
首页> 外文期刊>Journal of the American Chemical Society >High-Resolution Structures and Orientations of Antimicrobial Peptides Piscidin 1 and Piscidin 3 in Fluid Bilayers Reveal Tilting, Kinking, and Bilayer Immersion
【24h】

High-Resolution Structures and Orientations of Antimicrobial Peptides Piscidin 1 and Piscidin 3 in Fluid Bilayers Reveal Tilting, Kinking, and Bilayer Immersion

机译:流体双层中抗菌肽Piscidin 1和Piscidin 3的高分辨率结构和方向揭示了倾斜,弯曲和双层浸没

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

While antimicrobial peptides (AMPs) have been widely investigated as potential therapeutics, high-resolution structures obtained under biologically relevant conditions are lacking. Here, the high-resolution structures of the homologous 22-residue long AMPs piscidin 1 (p1) and piscidin 3 (p3) are determined in fluid-phase 3:1 phosphati-dylcholine/phosphatidylglycerol (PC/PG) and 1:1 phosphati-dylethanolamine/phosphatidylglycerol (PE/PG) bilayers to identify molecular features important for membrane destabi-lization in bacterial cell membrane mimics. Structural refinement of ~1H-~(15)N dipolar couplings and ~(15)N chemical shifts measured by oriented sample solid-state NMR and all-atom molecular dynamics (MD) simulations provide structural and orientational information of high precision and accuracy about these interfacially bound α-helical peptides. The tilt of the helical axis, τ, is between 83° and 93° with respect to the bilayer normal for all systems and analysis methods. The average azimuthal rotation, ρ, is 235°, which results in burial of hydrophobic residues in the bilayer. The refined NMR and MD structures reveal a slight kink at G13 that delineates two helical segments characterized by a small difference in their τ angles (<10°) and significant difference in their ρ angles (~25°). Remarkably, the kink, at the end of a G(X)_4G motif highly conserved among members of the piscidin family, allows p1 and p3 to adopt ρ angles that maximize their hydrophobic moments. Two structural features differentiate the more potent p1 from p3: p1 has a larger ρ angle and less N-terminal fraying. The peptides have comparable depths of insertion in PC/PG, but p3 is 1.2 A more deeply inserted than p1 in PE/PG. In contrast to the ideal a-helical structures typically assumed in mechanistic models of AMPs, p1 and p3 adopt disrupted a-helical backbones that correct for differences in the amphipathicity of their N- and C-ends, and their centers of mass lie ~1.2-3.6 A below the plane defined by the C2 atoms of the lipid acyl chains.
机译:尽管已经广泛研究了抗菌肽(AMPs)作为潜在的治疗方法,但缺乏在生物学相关条件下获得的高分辨率结构。在这里,在液相3:1磷脂酰胆碱/磷脂酰甘油(PC / PG)和1:1磷脂中测定了22个残基长的AMPs ciscidin 1(p1)和piscidin 3(p3)的高分辨率结构。 -二乙醇胺/磷脂酰甘油(PE / PG)双层膜,以鉴定对细菌细胞膜模拟物中的膜去稳定作用重要的分子特征。通过定向样品固态NMR和全原子分子动力学(MD)模拟测得的〜1H-〜(15)N偶极偶合和〜(15)N化学位移的结构细化提供了关于以下结构的高精度和准确度的结构和取向信息这些界面结合的α-螺旋肽。对于所有系统和分析方法,相对于双层法线,螺旋轴的倾斜度τ在83°和93°之间。平均方位角旋转ρ为235°,这导致在双层中掩埋了疏水性残基。精细的NMR和MD结构在G13处显示出轻微的扭结,描绘出两个螺旋段,其特征是它们的τ角(<10°)很小,而ρ角(〜25°)有很大差异。值得注意的是,在piscidin家族成员中高度保守的G(X)_4G图案末端的纽结允许p1和p3采用ρ角,以最大化其疏水力矩。两个结构特征将p1与p3的作用区分开:p1具有更大的ρ角和更少的N端磨损。这些肽在PC / PG中的插入深度相当,但在PE / PG中,p3的插入深度比p1大1.2A。与通常在AMPs的机械模型中假定的理想a螺旋结构相反,p1和p3采用打乱的a螺旋主链来校正其N端和C端的两亲性差异,其质心位于〜1.2在脂质酰基链的C2原子所定义的平面下方-3.6A。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第9期|3491-3504|共14页
  • 作者单位

    Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States;

    Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0307, United States;

    National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States;

    Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0307, United States;

    National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States ,Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Nashville, Tennessee 37232;

    Department of Chemistry, Hamilton College, Clinton, New York 13323, United States;

    Department of Chemistry, Hamilton College, Clinton, New York 13323, United States;

    Department of Chemistry, Hamilton College, Clinton, New York 13323, United States;

    Department of Chemistry, Hamilton College, Clinton, New York 13323, United States;

    Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States;

    Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States;

    Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0307, United States;

    Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States;

    Department of Chemistry, Hamilton College, Clinton, New York 13323, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号