首页> 外文期刊>Journal of the American Chemical Society >Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using ~7Li MRI
【24h】

Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using ~7Li MRI

机译:使用〜7Li MRI将锂电池中微结构化锂金属的生长与电解质盐消耗相关联

获取原文
获取原文并翻译 | 示例
       

摘要

Lithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ ~Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode. For this purpose, chemical shift (CS) imaging of the metal electrodes is a particularly sensitive diagnostic method, enabling a clear distinction to be made between different types of microstructural growth occurring at the electrode surface and the eventual dendrite growth between the electrodes. The CS imaging shows that mossy types of microstructure grow close to the surface of the anode from the beginning of charge in every cell studied, while dendritic growth is triggered much later. Simple metrics have been developed to interpret the MRI data sets and to compare results from a series of cells charged at different current densities. The results show that at high charge rates, there is a strong correlation between the onset time of dendrite growth and the local depletion of the electrolyte at the surface of the electrode observed both experimentally and predicted theoretical (via the Sand's time model). A separate mechanism of dendrite growth is observed at low currents, which is not governed by salt depletion in the bulk liquid electrolyte. The MRI approach presented here allows the rate and nature of a process that occurs in the solid electrode to be correlated with the concentrations of components in the electrolyte.
机译:锂离子和可充电锂电池中锂枝晶的生长与严重的安全隐患有关。为了克服这些问题,需要对工作条件下树枝状晶体的生长机理有基本的了解。在这项工作中,对对称锂电池中的电解质和锂金属电极均进行了原位〜Li磁共振(MRI),从而研究了电解质浓度梯度的行为,并将其与微结构生长的类型和速率相关。锂金属电极。为此,金属电极的化学位移(CS)成像是一种特别灵敏的诊断方法,可以在电极表面发生的不同类型的微结构生长与电极之间最终的枝晶生长之间做出明显区分。 CS成像表明,从所研究的每个电池中的电荷开始,长满苔藓的微结构类型就生长在阳极表面附近,而树突状生长则在更晚的时候触发。已经开发出简单的度量标准来解释MRI数据集并比较以不同电流密度充电的一系列电池的结果。结果表明,在高充电速率下,枝晶生长的开始时间与电极表面电解质的局部消耗之间存在很强的相关性,无论是实验观察还是理论预测(通过Sand的时间模型)。在低电流下观察到树枝状晶体生长的独立机制,这不受本体液体电解质中盐耗的支配。此处介绍的MRI方法使固体电极中发生的过程的速率和性质与电解质中各组分的浓度相关联。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第48期|15209-15216|共8页
  • 作者单位

    Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States;

    Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States;

    Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.;

    Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States;

    Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States;

    Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号