首页> 外文期刊>Journal of the American Chemical Society >Dependence of Internal Friction on Folding Mechanism
【24h】

Dependence of Internal Friction on Folding Mechanism

机译:内摩擦对折叠机制的依赖性

获取原文
获取原文并翻译 | 示例
       

摘要

An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.
机译:蛋白质折叠中的一个突出挑战是了解折叠动力学中“内部摩擦”的根源,这是根据折叠速率对溶剂粘度的依赖性实验确定的。通过模拟表明,可能的起源是穿过局部扭转壁垒。但是,尚不清楚为什么内部摩擦因蛋白质而异,或同一蛋白质的不同折叠障碍如何变化。使用具有可变溶剂粘度的全原子模拟,结合过渡路径采样来获得反应速率并通过马尔可夫状态模型进行分析,我们能够确定几种肽和小蛋白折叠时的内摩擦。与实验一致,我们发现内部摩擦最大的折叠事件是那些主要涉及螺旋形成的折叠事件,而发夹的形成几乎没有或没有摩擦的迹象。通过对折叠过渡路径的仔细分析,我们发现,当扭转角的变化是折叠自由能垒附近折叠机制的重要组成部分时,就会产生内摩擦。这些结果为蛋白质之间的内部摩擦效应变化以及同一蛋白质的能量分布提供了解释。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第9期|3283-3290|共8页
  • 作者单位

    Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States;

    Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom,CIC nanoGUNE, 20018 Donostia-San Sebastian, Spain,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain;

    Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States;

    Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号