首页> 外文期刊>Journal of the American Chemical Society >Supramolecular Self-Assembly Induced Adjustable Multiple Gating States of Nanofluidic Diodes
【24h】

Supramolecular Self-Assembly Induced Adjustable Multiple Gating States of Nanofluidic Diodes

机译:超分子自组装诱导的纳米流体二极管的可调门控状态。

获取原文
获取原文并翻译 | 示例
       

摘要

Artificial nanochannels, inheriting smart gating functions of biological ion channels, promote the development of artificial functional nanofluidic devices for high-performance biosensing and electricity generation. However, gating states of the artificial nanochannels have been mainly realized through chemical modification of the channels with responsive molecules, and their gating states cannot be further regulated once the nanochannel is modified. In this work, we employed a new supramolecular layer-by-layer (LbL) self-assembly method to achieve reversible and adjustable multiple gating features in nanofluidic diodes. Initially, a self-assembly precursor was modified into a single conical nanochannel, then host molecule-cucurbit[8]uril (CB[8]) and guest molecule, a naphthalene derivative, were self-assembled onto the precursor through an LbL method driven by host-enhanced π-π interaction, forming supramolecular monolayer or multilayers on the inner surface of the channel. These self-assemblies with different layer numbers possessed remarkable charge effects and steric effects, exhibiting a capability to regulate the surface charge density and polarity, the effective diameter, and the geometric asymmetry of the single nanochannel, realizing reversible gating of the single nanochannel among multiple rectification and ion-conduction states. As an example of self-assembly of supramolecular networks in nanoconfinements, this work provides a new approach for enhancing functionalities of artificial nanochannels by LbL supramolecular self-assemblies. Meanwhile, since the host molecule, CB[8], used in this work can interact with different kinds of biomolecules and stimuli-responsive chemical species, this work can be further extended to build a novel stable multiple-state research platform for a variety of uses such as sensing and controllable release.
机译:人造纳米通道继承了生物离子通道的智能门控功能,促进了用于高性能生物传感和发电的人造功能纳米流体装置的发展。然而,人工纳米通道的门控状态主要是通过对响应分子进行化学修饰来实现的,一旦修饰了纳米通道,就无法进一步调节其门控状态。在这项工作中,我们采用了一种新的超分子逐层(LbL)自组装方法,以实现可逆和可调节的纳米流体二极管多重门控功能。最初,将自组装前体修饰为单个圆锥形纳米通道,然后通过LbL方法驱动将宿主分子葫芦[8]尿素(CB [8])和客体分子萘衍生物自组装到前体上通过主体增强的π-π相互作用,在通道的内表面形成超分子单层或多层。这些具有不同层数的自组装体具有显着的电荷效应和空间效应,表现出调节单个纳米通道的表面电荷密度和极性,有效直径和几何不对称性的能力,实现单个纳米通道在多个通道之间的可逆门控整流和离子传导状态。作为纳米约束中超分子网络自组装的一个例子,这项工作提供了一种通过LbL超分子自组装增强人工纳米通道功能的新方法。同时,由于这项工作中使用的宿主分子CB [8]可以与不同种类的生物分子和刺激反应性化学物质相互作用,因此可以进一步扩展该工作,从而为各种诸如感测和可控释放的用途。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第50期|16372-16379|共8页
  • 作者单位

    Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China;

    Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia;

    Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China;

    Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia;

    Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China;

    Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China;

    Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia,Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号