首页> 外文期刊>Journal of the American Chemical Society >Vinylogous Dehydration by a Polyketide Dehydratase Domain in Curacin Biosynthesis
【24h】

Vinylogous Dehydration by a Polyketide Dehydratase Domain in Curacin Biosynthesis

机译:在姜黄素生物合成中通过聚酮类脱水酶结构域进行酒质脱水。

获取原文
获取原文并翻译 | 示例
       

摘要

Polyketide synthase (PKS) enzymes continue to hold great promise as synthetic biology platforms for the production of novel therapeutic agents, biofuels, and commodity chemicals. Dehydratase (DH) catalytic domains play an important role during polyketide biosynthesis through the dehydration of the nascent polyketide intermediate to provide olefins. Our understanding of the detailed mechanistic and structural underpinning of DH domains that control substrate specificity and selectivity remains limited, thus hindering our efforts to rationally re-engineer PKSs. The curacin pathway houses a rare plurality of possible double bond permutations containing conjugated olefins as well as both cis- and trans-olefins, providing an unrivaled model system for polyketide dehydration. All four DH domains implicated in curacin biosynthesis were characterized in vitro using synthetic substrates, and activity was measured by LC-MS/MS analysis. These studies resulted in complete kinetic characterization of the all-trans-trienoate-forming CurK-DH, whose k_cat, of 72 s~(-1) is more than 3 orders of magnitude greater than that of any previously reported PKS DH domain. A novel stereospecific mechanism for diene formation involving a vinylogous enolate intermediate is proposed for the CurJ and CurH DHs on the basis of incubation studies with truncated substrates. A synthetic substrate was co-crystallized with a catalytically inactive Phe substitution in the His-Asp catalytic dyad of CurJ-DH to elucidate substrate-enzyme interactions. The resulting complex suggested the structural basis for dienoate formation and provided the first glimpse into the enzyme-substrate interactions essential for the formation of olefins in polyketide natural products. This examination of both canonical and non-canonical dehydration mechanisms reveals hidden catalytic activity inherent in some DH domains that may be leveraged for future applications in synthetic biology.
机译:聚酮化合物合酶(PKS)酶作为生产新型治疗剂,生物燃料和商品化学品的合成生物学平台,一直具有广阔的前景。脱水酶(DH)催化域通过新生的聚酮化合物中间体的脱水以提供烯烃,在聚酮化合物的生物合成过程中发挥重要作用。我们对控制底物特异性和选择性的DH结构域的详细机制和结构基础的理解仍然有限,因此阻碍了我们合理地重新设计PKS的努力。 curacin途径包含罕见的多个可能的双键置换,其中包含共轭烯烃以及顺式和反式烯烃,为聚酮化合物脱水提供了无与伦比的模型系统。使用合成底物在体外表征了涉及姜黄素生物合成的所有四个DH域,并通过LC-MS / MS分析测量了活性。这些研究对形成全反式三烯酸酯的CurK-DH进行了完整的动力学表征,其k_cat为72 s〜(-1),比以前报道的任何PKS DH结构域大3个数量级。基于与截短的底物的温育研究,针对CurJ和CurH DHs提出了一种新的立体定向形成二烯的立体定向机制,其中包括乙烯基烯醇酸酯中间体。合成的底物与CurJ-DH的His-Asp催化二聚体中的催化失活的Phe取代共结晶,以阐明底物与酶之间的相互作用。所得的络合物为二烯酸形成的结构基础提供了提示,并提供了对聚酮化合物天然产物中形成烯烃必不可少的酶-底物相互作用的第一印象。对规范和非规范脱水机制的检查揭示了某些DH域固有的隐藏催化活性,可将其用于合成生物学的未来应用。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第49期|16024-16036|共13页
  • 作者单位

    Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States;

    Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Medicinal Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号