...
首页> 外文期刊>Journal of the American Chemical Society >Reaction Coordinate Leading to H_2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory
【24h】

Reaction Coordinate Leading to H_2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory

机译:共振共振光谱和密度泛函理论在[FeFe]-加氢酶中导致H_2生成的反应坐标

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (H_(hyd)) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using ~(57)Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that H_(hyd) is the catalytic state one step prior to H_2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H_2 bond formation by [FeFe]-hydrogenases.
机译:[FeFe]-加氢酶是金属酶,能以极高的速率将质子可逆地还原为分子氢。我们已经使用〜(57)Fe核共振振动光谱法(NRVS)和密度泛函理论(DFT)表征了莱茵衣藻和脱硫脱硫弧菌的[FeFe]氢化酶中的催化能级氢化物状态(H_(hyd))。 H / D交换确定了源自双核铁辅因子的两种Fe-H弯曲模式。 DFT计算表明,这些光谱特征是由铁结合的末端氢化物引起的,Fe-H振动频率高度依赖于催化辅因子的胺碱与氢化物和保守的半胱氨酸之间的相互作用,该半胱氨酸终止了质子转移链与氢的结合。活动站点。结果表明,H_(hyd)是H_2形成前的一步催化态。因此,观察到的振动光谱为通过[FeFe]氢化酶形成H_2键的反应坐标提供了机械原理。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第46期|16894-16902|共9页
  • 作者单位

    Institut fur Chemie, Technische Universitaet Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany;

    Max-Planck-Institut fuer Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Muelheim an der Ruhr, Germany;

    Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States;

    Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States;

    Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States;

    Max-Planck-Institut fuer Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Muelheim an der Ruhr, Germany;

    Max-Planck-Institut fuer Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Muelheim an der Ruhr, Germany;

    School of Chemical Sciences, University of Illinois, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States;

    JASRI, Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan;

    JASRI, Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan;

    School of Chemical Sciences, University of Illinois, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States;

    Max-Planck-Institut fuer Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Muelheim an der Ruhr, Germany;

    Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号