首页> 外文会议>Solar Hydrogen and Nanotechnology II; Proceedings of SPIE-The International Society for Optical Engineering; vol.6650 >Merging FeFe-hydrogenases with materials and nanomaterials as biohybrid catalysts for solar H_2 production
【24h】

Merging FeFe-hydrogenases with materials and nanomaterials as biohybrid catalysts for solar H_2 production

机译:将FeFe-加氢酶与材料和纳米材料合并为生物杂化催化剂以生产太阳能H_2

获取原文
获取原文并翻译 | 示例

摘要

The catalysts commonly used for the H_2 producing reaction in artificial solar systems are typically platinum or particulate platinum composites. Biological catalysts, the hydrogenases, exist in a wide-variety of microbes and are biosynthesized from abundant, non-precious metals. By virtue of a unique catalytic metallo-cluster that is composed of iron and sulfur, [FeFe]-hydrogenases are capable of catalyzing H_2 production at turnover rates of millimoles-per-second. In addition, these biological catalysts possess some of the characteristics that are desired for cost-effective solar H_2 production systems, high solubilities in aqueous solutions and low activation energies, but are sensitive to CO and O_2. We are investigating ways to merge [FeFe]-hydrogenases with a variety of organic materials and nanomaterials for the fabrication of electrodes and biohybrids as catalysts for use in artificial solar H_2 production systems. These efforts include designs that allow for the integration of [FeFe]-hydrogenase in dye-solar cells as models to measure solar conversion and H_2 production efficiencies. In support of a more fundamental understanding of [FeFe]-hydrogenase for these and other applications the role of protein structure in catalysis is being investigated. Currently there is little known about the mechanism of how these and other enzymes couple multi-electron transfer to proton reduction. To further the mechanistic understanding of [FeFe]-hydrogenases, structural models for substrate transfer are being used to create enzyme variants for biochemical analysis. Here results are presented on investigations of proton-transfer pathways in [FeFe]-hydrogenase and their interaction with single-walled carbon nanotubes.
机译:在人造太阳能系统中通常用于产生H_2的反应的催化剂通常是铂或颗粒状铂复合材料。生物催化剂氢化酶存在于多种微生物中,是由丰富的非贵金属生物合成的。由于由铁和硫组成的独特的催化金属簇,[FeFe]-加氢酶能够以每秒毫摩尔的周转速率催化H_2的产生。另外,这些生物催化剂具有成本效益高的太阳能H_2生产系统所需的某些特性,水溶液中的高溶解度和低活化能,但对CO和O_2敏感。我们正在研究将[FeFe]加氢酶与各种有机材料和纳米材料合并的方法,以制造电极和生物杂化物作为催化剂,用于人工太阳能H_2生产系统。这些工作包括允许将[FeFe]-加氢酶整合到染料-太阳能电池中的设计,以作为测量太阳能转化率和H_2生产效率的模型。为了支持对[FeFe]-加氢酶进行这些和其他应用的更基本的了解,正在研究蛋白质结构在催化中的作用。目前,关于这些酶和其他酶如何将多电子转移与质子还原耦合的机理鲜为人知。为了进一步了解[FeFe]-加氢酶的机理,正在使用底物转移的结构模型来创建用于生化分析的酶变体。在这里,结果是关于[FeFe]-氢化酶中质子转移途径及其与单壁碳纳米管相互作用的研究结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号