首页> 外文期刊>Journal of the American Chemical Society >Structure- and Potential-Dependent Cation Effects on CO Reduction at Copper Single-Crystal Electrodes
【24h】

Structure- and Potential-Dependent Cation Effects on CO Reduction at Copper Single-Crystal Electrodes

机译:结构和电位依赖的阳离子对铜单晶电极上CO还原的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The complexity of the electrocatalytic reduction of CO to CH_4 and C_2H_4 on copper electrodes prevents a straightforward elucidation of the reaction mechanism and the design of new and better catalysts. Although structural and electrolyte effects have been separately studied, there are no reports on structure-sensitive cation effects on the catalyst's selectivity over a wide potential range. Therefore, we investigated CO reduction on Cu(100), Cu(111), and Cu(polycrystalline) electrodes in 0.1 M alkaline hydroxide electrolytes (LiOH, NaOH, KOH, RbOH, CsOH) between 0 and -1.5 V vs RHE. We used online electrochemical mass spectrometry and high-performance liquid chromatography to determine the product distribution as a function of electrode structure, cation size, and applied potential. First, cation effects are potential dependent, as larger cations increase the selectivity of all electrodes toward ethylene at E > -0.45 V vs RHE, but methane is favored at more negative potentials. Second, cation effects are structure-sensitive, as the onset potential for C_2H_4 formation depends on the electrode structure and cation size, whereas that for CH_4 does not. Fourier Transform infrared spectroscopy (FTIR) and density functional theory help to understand how cations favor ethylene over methane at low overpotentials on Cu(100). The rate-determining step to methane and ethylene formation is CO hydrogenation, which is considerably easier in the presence of alkaline cations for a CO dimer compared to a CO monomer. For Li~+ and Na~+, the stabilization is such that hydrogenated dimers are observable with FTIR at low overpotentials. Thus, potential-dependent, structure-sensitive cation effects help steer the selectivity toward specific products.
机译:在铜电极上将CO电催化还原为CH_4和C_2H_4的复杂性阻止了对反应机理的直接阐明以及新的更好的催化剂的设计。尽管已经分别研究了结构和电解质的影响,但尚无关于结构敏感阳离子对催化剂在宽电位范围内选择性的影响的报道。因此,我们研究了在0和-1.5 V对RHE之间的0.1 M碱性氢氧化物电解液(LiOH,NaOH,KOH,RbOH,CsOH)中,Cu(100),Cu(111)和Cu(多晶)电极上的CO还原量。我们使用在线电化学质谱和高效液相色谱法确定产物分布与电极结构,阳离子大小和施加电势的关系。首先,阳离子效应与电势有关,因为较大的阳离子会增加所有电极在E> -0.45 V vs RHE时对乙烯的选择性,但甲烷在负电势更大时更为有利。其次,阳离子效应是结构敏感的,因为C_2H_4形成的起始电位取决于电极结构和阳离子尺寸,而CH_4的起始电位则不受电极结构和阳离子尺寸的影响。傅里叶变换红外光谱(FTIR)和密度泛函理论有助于理解在Cu(100)上低电势下阳离子如何比乙烯更有利于乙烯。决定甲烷和乙烯形成的速率步骤是CO加氢,与CO单体相比,在存在用于CO二聚体的碱性阳离子的情况下,这非常容易。对于Li +和Na +,其稳定度使得可以在低超电势下用FTIR观察到氢化二聚体。因此,电位依赖性,结构敏感的阳离子效应有助于将选择性转向特定的产物。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第45期|16412-16419|共8页
  • 作者单位

    Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden, Netherlands;

    Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden, Netherlands;

    Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden, Netherlands;

    Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden, Netherlands,Departament de Ciència de Materials i Química Fisica and, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martíi Franqués 1, Barcelona, Spain;

    Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号