首页> 外文期刊>Journal of the American Chemical Society >Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics
【24h】

Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics

机译:氧空位电荷控制赤铁矿中电荷载体的俘获和弛豫:从头算非绝热分子动力学

获取原文
获取原文并翻译 | 示例
       

摘要

Ultrafast charge recombination in hematite (α-Fe_2O_3) severely limits its applications in solar energy conversion and utilization, for instance, in photoelectrochemical water splitting. We report the first time-domain ab initio study of charge relaxation dynamics in α-Fe_2O_3 with and without the oxygen vacancy (O_v) defect, using non-adiabatic molecular dynamics implemented within time-dependent density functional theory. The simulations show that the hole trapping is the rate-limiting step in the electron-hole recombination process for both neutral and ionized O_v systems. The electron trapping is fast, and the trapped electron are relatively long-lived. A similar asymmetry is found for the relaxation of free charge carriers: relaxation of photoholes in the valence band is slower than relaxation of photoelectrons in the conduction band. The slower dynamics of holes offers an advantage to water oxidation at α-Fe_2O_3 photoanodes. Notably, the neutral O_v defect accelerates significantly the charge recombination rate, by about a factor of 30 compared to the ideal lattice, due to the stronger electron-vibrational coupling at the defect. However, the recombination rate in the ionized O_v defect is decreased by a factor of 10 with respect to the neutral defect, likely due to expansion of the local iron shell around the O_v site. The O_v defect ionization in α-Fe_2O_3 photoanodes is important for increasing both electrical conductivity and charge carrier lifetimes. The simulations reproduce well the time scales for the hot carrier cooling, trapping and recombination available from transient spectroscopy experiments, and suggest two alternative mechanisms for the O_v-assisted electron-hole recombination. The study provides a detailed atomistic understanding of carrier dynamics in hematite, and rationalizes the experimentally reported activation of α-Fe_2O_3 photoanodes by incorporation of O_v defects.
机译:赤铁矿(α-Fe_2O_3)中的超快速电荷重组严重限制了其在太阳能转换和利用中的应用,例如在光电化学水分解中。我们使用在时间依赖性密度泛函理论内实现的非绝热分子动力学,报告了在有和没有氧空位(O_v)缺陷的情况下,α-Fe_2O_3中电荷弛豫动力学的首次时域从头算研究。仿真表明,对于中性和离子化的O_v系统,空穴俘获是电子-空穴复合过程中的限速步骤。电子的俘获速度很快,并且被俘获的电子的寿命相对较长。对于自由电荷载流子的弛豫也发现了类似的不对称性:价带中光洞的弛豫比导带中光电子的弛豫慢。空穴的较慢动力学为α-Fe_2O_3光电阳极的水氧化提供了优势。值得注意的是,由于缺陷处较强的电子振动耦合,与理想晶格相比,中性O_v缺陷可显着提高电荷重组速率,约为30倍。但是,电离的O_v缺陷中的重组率相对于中性缺陷降低了10倍,这可能是由于O_v部位周围的局部铁壳膨胀所致。 α-Fe_2O_3光电阳极中的O_v缺陷电离对于增加电导率和电荷载流子寿命都很重要。这些模拟很好地再现了瞬态光谱实验中可用的热载流子冷却,俘获和复合的时间尺度,并提出了O_v辅助电子-空穴复合的两种替代机制。该研究提供了对赤铁矿载流子动力学的详细原子学理解,并通过掺入O_v缺陷合理化了实验报道的α-Fe_2O_3光阳极活化。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第19期|6707-6717|共11页
  • 作者单位

    International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China,Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States;

    Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States;

    College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China;

    Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States;

    International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China;

    Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号