首页> 外文期刊>Journal of the American Chemical Society >Surface Polarity and Self-Structured Nanogrooves Collaboratively Oriented Molecular Packing for High Crystallinity toward Efficient Charge Transport
【24h】

Surface Polarity and Self-Structured Nanogrooves Collaboratively Oriented Molecular Packing for High Crystallinity toward Efficient Charge Transport

机译:表面极性和自构纳米沟槽共同定向的分子堆积,可实现高效结晶,以实现高效电荷传输

获取原文
获取原文并翻译 | 示例
           

摘要

Efficient charge transport in organic semiconductors is essential for construction of high performance optoelectronic devices. Herein, for the first time, we demonstrate that poly(amic acid) (PAA), a facilely deposited and annealing-free dielectric layer, can tailor the growth of organic semiconductor films with large area and high crystallinity toward efficient charge transport and high mobility in their thin film transistors. Pentacene is used as a model system to demonstrate the concept with mobility up to 30.6 cm~2 V~(-1) s~(-1), comparable to its high quality single crystal devices. The structure of PAA has corrugations with OH groups pointing out of the surface, and the presence of an amide bond further allows adjacent polymer strands to interact via hydrogen bonding, leading to a self-rippled surface perpendicular to the corrugation. On the other hand, the strong polar groups (—COOH/—CONH) of PAA could provide repulsive forces between PAA and pentacene, which results in the vertical orientation of pentacene on the dielectric surface. Indeed, in comparison with its imidized counterpart polyimide (PI), PAA dielectric significantly enhances the film crystallinity, drastically increases the domain size, and decreases the interface trap density, giving rise to superior device performance with high mobility. This concept can be extended to more organic semiconducting systems, e.g., 2,6-diphenylanthracene (DPA), tetracene, copper phthalocyanine (CuPc), and copper hexadecafluorophthalocyanine (F_(16)CuPc), demonstrating the general applicability. The results show the importance of combining surface nanogrooves with the strong polarity in orienting the molecular arrangement for high crystallinity toward efficient charge transport in organic semiconductors.
机译:有机半导体中有效的电荷传输对于高性能光电器件的构建至关重要。在这里,我们首次证明了聚酰胺酸(PAA)是一种易于沉积且无退火的介电层,可以使具有大面积和高结晶度的有机半导体膜的生长适应有效的电荷传输和高迁移率在他们的薄膜晶体管中。并五苯被用作模型系统来演示其概念,其迁移率高达30.6 cm〜2 V〜(-1)s〜(-1),与其高质量的单晶器件相当。 PAA的结构具有表面带有OH基的波纹,并且酰胺键的存在进一步允许相邻的聚合物链通过氢键相互作用,从而导致垂直于波纹的自波纹表面。另一方面,PAA的强极性基团(-COOH / -CONH)可以在PAA和并五苯之间提供排斥力,这导致并五苯在介电表面上垂直定向。实际上,与其酰亚胺化的对位聚酰亚胺(PI)相比,PAA电介质显着提高了薄膜的结晶度,极大地增加了畴的尺寸,并降低了界面陷阱密度,从而带来了具有高迁移率的出色器件性能。该概念可以扩展到更多的有机半导体系统,例如2,6-二苯基蒽(DPA),并四苯,铜酞菁(CuPc)和六氟铜酞菁铜(F_(16)CuPc),证明了其普遍适用性。结果表明,将具有强极性的表面纳米沟槽结合在一起,对于使分子排列方向具有较高的结晶度,从而在有机半导体中实现有效的电荷传输十分重要。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第7期|2734-2740|共7页
  • 作者单位

    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany & Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany;

    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;

    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;

    Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany & Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany;

    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;

    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;

    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;

    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;

    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China;

    Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany & Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany;

    Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号