首页> 外文期刊>Journal of the American Chemical Society >Structure-Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling
【24h】

Structure-Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling

机译:多尺度建模的被动膜渗透结构动力学关系

获取原文
获取原文并翻译 | 示例
       

摘要

Passive membrane permeation of small molecules is essential to achieve the required absorption, distribution, metabolism, and excretion (ADME) profiles of drug candidates, in particular intestinal absorption and transport across the blood-brain barrier. Computational investigations of this process typically involve either building QSAR models or performing free energy calculations of the permeation event. Although insightful, these methods rarely bridge the gap between computation and experiment in a quantitative manner, and identifying structural insights to apply toward the design of compounds with improved permeability can be difficult. In this work, we combine molecular dynamics simulations capturing the kinetic steps of permeation at the atomistic level with a dynamic mechanistic model describing permeation at the in vitro level, finding a high level of agreement with experimental permeation measurements. Calculation of the kinetic rate constants determining each step in the permeation event allows derivation of structure-kinetic relationships of permeation. We use these relationships to probe the structural determinants of membrane permeation, finding that the desolvation/loss of hydrogen bonding required to leave the membrane partitioned position controls the membrane flip-flop rate, whereas membrane partitioning determines the rate of leaving the membrane.
机译:小分子的被动膜渗透对于实现候选药物的所需吸收,分布,代谢和排泄(ADME)特性(尤其是肠道吸收和跨血脑屏障的运输)至关重要。对这一过程的计算研究通常涉及建立QSAR模型或对渗透事件进行自由能计算。尽管这些方法颇有见识,但它们很少以量化的方式弥合计算与实验之间的鸿沟,并且难以识别出结构见识以应用于具有更高渗透率的化合物的设计。在这项工作中,我们将捕获原子级渗透动力学步骤的分子动力学模拟与描述体外渗透率的动态力学模型相结合,发现与实验渗透率测量值高度吻合。确定渗透事件中每个步骤的动力学速率常数的计算允许推导渗透的结构动力学关系。我们使用这些关系来探究膜渗透的结构决定因素,发现离开膜分隔位置所需的去氢/氢键的脱溶剂/损失控制了膜的翻转速率,而膜分隔决定了离开膜的速率。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第1期|442-452|共11页
  • 作者单位

    Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States;

    Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States;

    Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States;

    Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号