首页> 外文期刊>Journal of structural geology >Numerical modelling of the effect of matrix anisotropy orientation on single layer fold development
【24h】

Numerical modelling of the effect of matrix anisotropy orientation on single layer fold development

机译:基质各向异性取向对单层褶皱发展影响的数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

The influence of matrix anisotropy of variable orientation on single layer folding is investigated using finite element models. Both linear (Newtonian) and power-law viscous materials are considered. The results show that the available isotropic analytical solution, when modified to include an appropriate approximation for the anisotropic viscosity, accurately predicts growth rates at small amplitude for planar anisotropy oriented at α = 45° to the competent layer for a wide range of normal viscosity ratios between single layer and matrix (μ_c = 10, 100) and degrees of anisotropy (δ = normal viscosity/shear viscosity = 2,12,25). For high normal viscosity ratio (μ_c = 100), the deviation from the analytical solution for other orientations increases with increasing degree of anisotropy but still remains relatively small (< 5% for 5 = 25). For low normal viscosity ratio (μ_c = 10), the differences for high δ are more significant and for α ≠ 0°, 45°, or 90° also depend on the imposed boundary conditions. However, if carefully applied, the analytical solution does provide a benchmark test for numerical codes that include oblique anisotropy. The numerical models at both small and finite amplitude show that a tight control on the boundary conditions is crucial for experiments with anisotropic materials, especially when the anisotropy is oblique to the boundaries. Analogue experiments with anisotropic materials, where boundary conditions are more difficult to control, must therefore be designed and interpreted with caution. Matrix anisotropy initially oriented obliquely with regard to the maximum shortening direction results in asymmetric buckle folds in the single layer and asymmetric chevron folds in the matrix, even if the deformation is purely coaxial. This is true for both linear and power-law materials and for a range of boundary conditions, both free and constrained. Asymmetric natural fold structures in anisotropic material do not therefore necessarily imply a component of non-coaxial flow.
机译:使用有限元模型研究了可变取向的矩阵各向异性对单层折叠的影响。线性(牛顿)和幂律粘性材料都可以考虑。结果表明,将可用的各向同性分析解决方案进行修改,使其包括各向异性粘度的适当近似值,即可在宽范围的正常粘度比范围内,以相对于感受层为α= 45°取向的平面各向异性,以小幅度准确地预测增长率单层和基体之间的距离(μ_c= 10,100)和各向异性度(δ=正粘度/剪切粘度= 2,12,25)。对于高标准粘度比(μ_c= 100),对于其他方向,与分析溶液的偏差随各向异性程度的增加而增加,但仍保持相对较小(对于5 = 25,<5%)。对于低标准粘度比(μ_c= 10),高δ的差异更大,而α≠0°,45°或90°的差异还取决于施加的边界条件。但是,如果仔细应用,该解析解决方案确实可以为包括倾斜各向异性的数字代码提供基准测试。在小振幅和有限振幅处的数值模型都表明,严格控制边界条件对于各向异性材料的实验至关重要,特别是当各向异性倾斜于边界时。因此,在设计和解释边界条件较难控制的各向异性材料时,必须进行模拟实验。最初相对于最大缩短方向倾斜的矩阵各向异性会导致单层中的不对称弯折褶皱和矩阵中的不对称V形褶皱,即使变形是纯粹同轴的。对于线性和幂律材料,以及一系列自由和受约束的边界条件,都是如此。因此,各向异性材料中的不对称自然褶皱结构不一定意味着非同轴流的组成部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号