首页> 外文期刊>Journal of structural geology >Understanding kinematic data from the Moine thrust zone in terms of a kinematics-based mathematical model of deforming thrust wedges
【24h】

Understanding kinematic data from the Moine thrust zone in terms of a kinematics-based mathematical model of deforming thrust wedges

机译:根据基于运动学的变形推力楔形数学模型了解来自莫因冲刺带的运动学数据

获取原文
获取原文并翻译 | 示例
       

摘要

A salient-recess pair along the Moine thrust zone exhibits significant lateral, kinematic variations. Specifically, the more steeply dipping portion of the thrust surface, associated with the recess, shows evidence for greater strain magnitudes and more out-of-the-plane motion than the adjoining salient. Additionally, a subset of the grain-shape data has grain-shape approximations with their long axes oriented perpendicular to the regional transport direction. To more fully understand these kinematic features, we developed a kinematics-based mathematical model of thrust wedge deformation.rnOur numerical model predicts an increase in strain magnitude as well as non-plane-strain flattening in the region of a thrust ramp, consistent with the strain patterns observed within the recess along the Moine thrust zone. Furthermore, in the absence of a lateral-confining boundary condition, much of the model thrust wedge experiences transport-perpendicular, maximum extension except for the region closest to the thrust where simple-shear deformation is dominant. Using our numerical model, we predict the amount of lateral-confining strain needed to induce plane-strain deformation (ε_(ps)) as well as the amount of lateral-confining strain necessary to make the long axis of the strain ellipsoid parallel with the transport direction (ε_(parallel)). We have found that the incremental ε_(parallel) can be as much as 42% of the incremental strain magnitude. Thus, we consider transport-perpendicular lineations like those seen along the Moine thrust zone to be the result of lateral-confining boundary conditions that are weak enough to allow transport-perpendicular maximum extension.
机译:沿莫因冲刺带的凸凹对表现出明显的横向运动学变化。特别地,与凹口相关的推力表面的更陡峭的倾斜部分显示出比邻接的凸点更大的应变幅度和更多的平面外运动的证据。另外,颗粒形状数据的子集具有其长轴垂直于区域传输方向的颗粒形状近似值。为了更全面地了解这些运动学特征,我们开发了基于运动学的推力楔形变形数学模型.rn我们的数值模型预测了推力斜坡区域的应变幅度以及非平面应变变平,这与在沿Moine推力带的凹陷内观察到的应变模式此外,在没有横向约束边界条件的情况下,除了最靠近简单剪切变形占主导地位的推力的区域外,大多数模型推力楔都经历了垂直于运输的最大延伸。使用我们的数值模型,我们预测引起平面应变变形(ε_(ps))所需的横向约束应变的量,以及使应变椭球体的长轴平行于平面的所需的横向约束应变的量。传输方向(ε_(平行))。我们发现,增量ε_(parallel)可以高达增量应变幅度的42%。因此,我们认为像沿Moine推力带看到的那样的运输垂直线是横向限制边界条件的结果,该边界条件足够弱,无法允许运输垂直线最大延伸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号