首页> 外文期刊>Journal of Spacecraft and Rockets >Aerodynamic Safing Approach for the 2001 Mars Odyssey Spacecraft During Aerobraking
【24h】

Aerodynamic Safing Approach for the 2001 Mars Odyssey Spacecraft During Aerobraking

机译:2001年火星奥德赛飞船在空气制动过程中的空气动力保护方法

获取原文
获取原文并翻译 | 示例
           

摘要

The 2001 Mars Odyssey spacecraft represents the third generation of aerobraking designs, following Magellan's pioneering aerobraking demonstration at Venus and Mars Global Surveyor's planned operational aerobraking at Mars. Aerobraking provides significant advantages for interplanetary spacecraft by reducing the size of the required propulsion system and propellant load, thereby allowing larger payloads for the same launch mass. However, aerobraking is not without risk; relatively small command errors or brief inattention to the highly variable atmospheric dynamics can lead to disaster. This paper describes how the 2001 Mars Odyssey aerobraking design and operations managed the inherent aerodynamics-related risks of aerobraking. We describe the configuration changes Odyssey used during aerobraking orbits and how the operations team managed those configurations. We present a detailed vehicle dynamics model derived for Odyssey's aerobraking safe-mode configuration, as well as the predicted attitude response during aerobraking safing events. Contingency procedures were developed before aerobraking and included an option to "pop-up" out of the atmosphere if aerobraking operations began to endanger spacecraft health and safety. We describe the criteria and decision-making process for commanding popup maneuvers. Finally, flight results from Odyssey's aerobraking experience are presented including an assessment of the aerodynamic safing approach in response to the highly variable atmospheric conditions.
机译:2001年火星奥德赛飞船代表了第三代航空制动设计,这是麦哲伦在金星上进行的开创性航空制动演示和火星全球测量师计划在火星上进行的航空制动设计之后的结果。航空制动通过减小所需推进系统的尺寸和推进剂载荷,从而为行星际航天器提供了显着优势,从而在相同的发射质量下允许更大的有效载荷。但是,航空制动并非没有风险。相对较小的命令错误或对高度可变的大气动力学的短暂关注会导致灾难。本文介绍了2001年Mars Odyssey的空气制动设计和操作如何管理与空气动力学相关的固有的空气制动风险。我们将介绍Odyssey在航空制动轨道上使用的配置更改,以及运营团队如何管理这些配置。我们提供了详细的车辆动力学模型,这些模型是针对奥德赛的气动制动安全模式配置而得出的,以及在气动制动安全事件期间的预期姿态响应。在航空制动之前制定了应急程序,其中包括如果航空制动操作开始危害航天器的健康和安全,则可以“弹出”大气的选项。我们描述了命令弹出动作的标准和决策过程。最后,介绍了奥德赛航空制动经验的飞行结果,包括对响应于高度变化的大气条件的空气动力学安全方法的评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号