首页> 外文期刊>Journal of Spacecraft and Rockets >Modeling Uncertainties in Direct Simulation Monte Carlo Calculations of Hypersonic Leading-Edge Flow
【24h】

Modeling Uncertainties in Direct Simulation Monte Carlo Calculations of Hypersonic Leading-Edge Flow

机译:直接模拟超音速前沿流的蒙特卡洛计算中的建模不确定性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The effects of uncertainties in the gas-surface and intermolecular interaction models on a hypersonic boundary-layer development are investigated by propagating these uncertainties through direct simulation Monte Carlo calculations of Mach 10 and 20 flows. The model input uncertainties considered are the momentum accommodation coefficient in the Maxwellian gas-surface interaction model, surface temperature and the viscosity exponent in the variable hard sphere molecular model. The effects of the input uncertainties are quantified by computing produced uncertainties in the flowfield temperature, flovefield density, surface shear, pressure, and heat flux. A nonintrusive generalized polynomial chaos expansion is used to propagate the uncertainties; reconstruct the probability density functions; and calculate the mean, standard deviation, and skew ness of the output variables. It is shown that the polynomial chaos expansion with just three flowfield samples can propagate uncertainties with an accuracy equivalent to Monte Carlo methods with 10 million samples. The uncertainty analysis shows that the surface fluxes and the flowfields in the hypersonic boundary layer are more sensitive to the accommodation coefficient uncertainty than surface temperature or viscosity exponent uncertainty. An input uncertainty of 19% in the accommodation coefficient results in a 20% uncertainty in the flowfield temperature at Mach 10 and a 31% uncertainty at Mach 20. This input uncertainty results in 22 and 28% uncertainties in the surface fluxes at the two Mach numbers. The produced uncertainties generally increase with Mach number, and the effect of introduced uncertainty diminishes away from the leading edge.
机译:通过对10和20马赫流的直接模拟蒙特卡洛计算来传播这些不确定性,研究了气体表面和分子间相互作用模型中不确定性对高超音速边界层发展的影响。考虑的模型输入不确定性是麦克斯韦气体表面相互作用模型中的动量调节系数,可变硬球分子模型中的表面温度和粘度指数。输入不确定性的影响可以通过计算流场温度,Flovefield密度,表面剪切,压力和热通量中产生的不确定性来量化。使用非侵入式广义多项式混沌展开来传播不确定性。重建概率密度函数;并计算输出变量的平均值,标准偏差和偏度。结果表明,仅具有三个流场样本的多项式混沌展开可以传播不确定性,其精度等同于具有1000万个样本的蒙特卡洛方法。不确定性分析表明,高超声速边界层中的表面通量和流场对调节系数的不确定性比表面温度或粘度指数的不确定性更为敏感。调节系数的19%输入不确定性导致10马赫流场温度的不确定性为20%,20马赫系数为31%的不确定性。输入不确定性导致两个马赫数的表面通量具有22%和28%的不确定性。数字。产生的不确定性通常随马赫数增加,并且所引入的不确定性的影响逐渐远离前沿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号