首页> 外文期刊>Journal of sea research >Ecology of intertidal microbial biofilms: Mechanisms, patterns and future research needs
【24h】

Ecology of intertidal microbial biofilms: Mechanisms, patterns and future research needs

机译:潮间带微生物生物膜的生态学:机理,模式和未来研究需求

获取原文
获取原文并翻译 | 示例
       

摘要

There is a continual struggle in ecology to improve our understanding of the complex interactions that take place between organisms and their surroundings at the genetic, species, community and ecosystem level. These interactions, and the transfer of material and energy that they support, drive the functional capacity of any ecosystem (Solan et al., 2012). Intertidal soft-sediments of temperate estuaries and shallow coastal lagoons are ranked among the most productive marine ecosystems (Heip et al., 1995) and are critical habitats in determining the sediment transport balance between the terrestrial and marine realm. On intertidal sand and mudflats, microbial biofilms, that are complex agglomerates of prokaryotes and microbial eukaryotes like diatoms, protozoa and fungi (Decho, 2000), are instrumental to both processes by affecting sediment stability through the secretion of extracellular polymeric substances (EPS) (Underwood and Paterson, 2003) and by regulating the energy transfer through the benthic food web as a major food source for herbivore consumers (Herman et al., 2000). Auto-trophic diatoms are major components of the biofilms and contribute significantly to estuarine primary production (i.e. 29-314 g C m~(-2)·yr~(-1); Underwood and Kromkamp, 1999), thereby supplying energy resources to biofilm consumers and their predators, while the heterotrophic prokaryotes are the primary remineralizers of organic matter. The exposure to highly variable and often extreme conditions is a regulating feature of estuarine conditions that determines biofilm properties. For example, UV radiation (Mouget et al., 2008; Waring et al., 2007), dessication and change in temperature and salinity (Coelho et al., 2009; Rijstenbil, 2005) during emersion; and hydrodynamic forces and sediment transport associated with currents and waves during submersion (Van Colen et al., 2010a; Widdows et al., 2004), have survival implications for the structure and functioning of biofilms and therefore require adaptation mechanisms such as the vertical migration exhibited by diatoms (Brotas et al., 2003; Consalvey et al., 2004; Jesus et al., 2006).
机译:在生态学领域,人们一直在不断地努力,以增进我们对在基因,物种,群落和生态系统层面上有机体与其周围环境之间发生的复杂相互作用的理解。这些相互作用以及它们所支持的物质和能量的转移,驱动了任何生态系统的功能能力(Solan等人,2012)。温带河口和浅水沿海泻湖的潮间带软沉积被列为生产力最高的海洋生态系统之一(Heip等,1995),是决定陆地与海洋之间沉积物运输平衡的重要栖息地。在潮间带的沙子和滩涂上,微生物生物膜是原核生物和微生物真核生物如硅藻,原生动物和真菌的复杂聚集体(Decho,2000),通过分泌细胞外聚合物质(EPS)影响沉积物的稳定性,对这两个过程都起着重要作用( Underwood和Paterson,2003年),以及通过调节底栖食物网的能量传递作为草食动物消费者的主要食物来源(Herman等,2000年)。自养硅藻是生物膜的主要组成部分,对河口的初级生产有重大贡献(即29-314 g C m〜(-2)·yr〜(-1); Underwood和Kromkamp,1999年),从而为生物膜消费者及其捕食者,而异养原核生物是有机质的主要再矿化剂。暴露于高度变化且通常为极端的条件是河口条件的调节特征,它决定了生物膜的特性。例如,紫外线辐射(Mouget等,2008; Waring等,2007),发芽过程中的干燥和温度和盐度的变化(Coelho等,2009; Rijstenbil,2005);等等。淹没过程中与水流相关的流体动力和沉积物迁移(Van Colen等,2010a; Widdows等,2004)对生物膜的结构和功能具有生存意义,因此需要诸如垂直迁移等适应机制硅藻(Brotas等人,2003; Consalvey等人,2004; Jesus等人,2006)。

著录项

  • 来源
    《Journal of sea research》 |2014年第9期|2-5|共4页
  • 作者单位

    Ghent University, Marine Biology Research Group, Krijgslaan 281-S8, B-9000 Ghent, Belgium;

    School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK;

    Departamento de Biologia and CESAM - Centra de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;

    Scottish Oceans Institute, School of Biological Sciences, University of St Andrews, KY16 8LB, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:38:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号