首页> 外文期刊>Journal of Scientific Computing >Stability Analysis and Error Estimates of Semi-implicit Spectral Deferred Correction Coupled with Local Discontinuous Galerkin Method for Linear Convection-Diffusion Equations
【24h】

Stability Analysis and Error Estimates of Semi-implicit Spectral Deferred Correction Coupled with Local Discontinuous Galerkin Method for Linear Convection-Diffusion Equations

机译:线性对流扩散方程的半隐式谱递延校正与局部不连续伽勒金方法的稳定性分析和误差估计

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we focus on the theoretical analysis of the second and third order semi-implicit spectral deferred correction (SDC) time discretization with local discontinuous Galerkin (LDG) spatial discretization for the one-dimensional linear convection-diffusion equations. We mainly study the stability and error estimates of the corresponding fully discrete scheme. Based on the Picard integral equation, the SDC method is driven iteratively by either the explicit Euler method or the implicit Euler method. It is easy to implement for arbitrary order of accuracy. For the semi-implicit SDC scheme, the iteration and the left-most endpoint involved in the integral for the implicit part increase the difficulty of the theoretical analysis. To be more precise, the test functions are more complex and the energy equations are more difficult to construct, compared with the Runge-Kutta type semi-implicit schemes. Applying the energy techniques, we obtain both the second and third order semi-implicit SDC time discretization with LDG spatial discretization are stable provided the time step , where the positive depends on the diffusion and convection coefficients and is independent of the mesh size h. We then obtain the optimal error estimates for the corresponding fully discrete scheme under the condition with similar technique for stability analysis. Numerical examples are presented to illustrate our theoretical results.
机译:在本文中,我们专注于一维线性对流扩散方程的二阶和三阶半隐式频谱延迟校正(SDC)时间离散与局部不连续Galerkin(LDG)空间离散的理论分析。我们主要研究相应完全离散方案的稳定性和误差估计。基于Picard积分方程,可以通过显式Euler方法或隐式Euler方法来迭代驱动SDC方法。对于任意精度顺序,都易于实现。对于半隐式SDC方案,隐式部分的积分中涉及的迭代和最左端点增加了理论分析的难度。更确切地说,与Runge-Kutta型半隐式方案相比,测试函数更复杂,能量方程式更难以构建。应用能量技术,我们获得了LDG空间离散化的二阶和三阶半隐式SDC时间离散化在时间步长稳定的情况下是稳定的,其中正数取决于扩散和对流系数并且与网格大小h无关。然后,我们使用类似的技术对稳定性条件下的条件获得相应的完全离散方案的最佳误差估计。数值例子说明了我们的理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号