...
首页> 外文期刊>Journal of Scientific Computing >Mode Decomposition Evolution Equations
【24h】

Mode Decomposition Evolution Equations

机译:模式分解演化方程

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Partial differential equation (PDb) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Wei and Jia in Europhys. Lett. 59(6):814-819, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett. 6(7): 165-167, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be easily used for secondary processing. Various simplifications of the proposed MoDEEs, including a linearized version, and an algebraic version, are discussed for computational convenience. The Fourier pseudospectral method, which is unconditionally stable for linearized high order MoDEEs, is utilized in our computation. Validation is carried out to mode separation of high frequency adjacent modes. Applications are considered to signal and image denois-ing, image edge detection, feature extraction, enhancement etc. It is hoped that this work enhances the understanding of high order PDEs and yields robust and useful tools for image and signal analysis.
机译:在过去的二十年中,基于偏微分方程(PDb)的方法已成为探索信号处理,图像处理,计算机视觉,机器视觉和人工智能等基本问题的最强大工具。基于PDE的方法的优势在于,它们可以实现全自动,鲁棒性,以分析图像,视频和高维数据。一个基本的问题是,是否可以使用PDE执行图像处理中的所有基本任务。如果可以设计PDE对信号和图像执行全比例模式分解,那么生成的模式对于满足各种信号和图像处理需求的二次处理将非常有用。尽管在过去的二十年中基于PDE的图像分析取得了长足进步,但PDE在图像/信号分析中的基本作用仅限于基于PDE的低通滤波器及其在噪声去除,边缘检测,分割等方面的应用。目前,尚不清楚如何构建基于PDE的全尺度模式分解方法。在提出的工作中解决了当前大多数基于PDE的图像/信号处理方法的上述局限性,在该工作中,我们引入了一系列模式分解演化方程(MoDEE),可用于多种应用。 MoDEE通过使用由Wei(引入的任意基于高阶PDE的低通滤波器(2002年,Europhys。Lett。59(6):814-819)中的PDE高通滤波器的扩展而构造)。 IEEE Signal Process.Lett.6(7):165-167,1999)。任意高阶PDE的使用对于模式分解中的频率定位至关重要。类似于小波变换,当前的MoDEE具有可控的时频定位,并且可以完美地重建原始功能。因此,MoDEE操作也称为PDE转换。然而,从本方法产生的模式在空间或时域中,并且可以容易地用于二次处理。为了计算方便,讨论了所提议的MoDEE的各种简化,包括线性化版本和代数版本。在我们的计算中,使用了对线性化高阶MoDEE无条件稳定的傅里叶拟谱方法。对高频相邻模式的模式分离进行验证。应用被认为是信号和图像的去噪,图像边缘检测,特征提取,增强等。希望这项工作能增进对高阶PDE的理解,并为图像和信号分析提供健壮而有用的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号