首页> 外文期刊>Journal of propulsion and power >Carbon-Carbon Nozzle Erosion and Shape Change in Full-Scale Solid-Rocket Motors
【24h】

Carbon-Carbon Nozzle Erosion and Shape Change in Full-Scale Solid-Rocket Motors

机译:大型固体火箭发动机的碳-碳喷嘴侵蚀和形状变化

获取原文
获取原文并翻译 | 示例
           

摘要

The erosion of nozzle protection materials during solid-rocket-motor burning needs to be accounted for to get reliable performance predictions, especially for long-duration firings. A study is conducted to predict carbon-carbon nozzle erosion behavior in full-scale solid-rocket motors for wide variations of motor operating conditions. The numerical model considers the solution of Reynolds-averaged Navier-Stokes equations in the nozzle, heterogeneous chemical reactions at the nozzle surface, ablation species injection in the boundary layer, variable multicomponent transport and thermodynamic properties, and heat conduction in the nozzle material. Two different ablation models are considered: a diffusion-limited approach and a finite-rate approach. The numerical model is used to study the erosion of carbon-carbon nozzle inserts for the second- and third-stage solid-rocket motors of the European Vega launcher. The effect of variable chamber pressure over the burning time and the effect of nozzle shape change on the erosion rate are taken into account in the numerical analysis. The obtained results show a very good agreement with the measured final eroded profile along the entire carbon-carbon nozzle throat insert for both motors. The shape-change effect is shown to be an important factor that has to be taken into account to get a good prediction of the throat erosion for long-duration firings.
机译:为了获得可靠的性能预测,特别是对于长时间点火,需要考虑固体火箭发动机燃烧期间喷嘴保护材料的腐蚀。进行了一项研究,以预测在全尺寸固体火箭发动机中碳-碳喷嘴的腐蚀行为,以适应各种不同的电动机工作条件。数值模型考虑了喷嘴中雷诺平均Navier-Stokes方程的求解,喷嘴表面的异质化学反应,边界层中的消融物质注入,可变的多组分传输和热力学性质以及喷嘴材料中的热传导。考虑了两种不同的消融模型:扩散限制方法和有限速率方法。该数值模型用于研究欧洲Vega发射器的第二级和第三级固体火箭发动机的碳-碳喷嘴插件的腐蚀。在数值分析中考虑了可变的燃烧室压力对燃烧时间的影响以及喷嘴形状变化对腐蚀速率的影响。所获得的结果表明,对于两个电机,沿着整个碳-碳喷嘴喉插件的最终侵蚀轮廓的测量结果非常吻合。事实表明,形状变化效应是一个重要因素,对于长时间燃烧,要获得良好的喉咙侵蚀预测,必须考虑这一因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号