首页> 外文期刊>Journal of propulsion and power >Direct Numerical Simulation and Large-Eddy Simulation of Supersonic Channel Flow
【24h】

Direct Numerical Simulation and Large-Eddy Simulation of Supersonic Channel Flow

机译:超声速通道水流的直接数值模拟和大涡模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Compressible isothermal-wall channel flows are studied with direct numerical simulation and large-eddy simulation tools. Computations are carried out using a high-order, low-dissipation, bandwidth-optimized weighted essentially nonoscillatory numerical scheme to describe the hy perbolic terms of the Navier-Stokes equations. Periodic supersonic channel flow direct numerical simulation (M = 1.5, Re_τ = 221, T_w = 500 K, and T_c = 700 K) is used to validate the procedure and the numerical scheme; a new subgrid term contribution based on pressure drop is proposed for the driving term required in momentum and energy equations for large-eddy simulation. Coherent structures of the flowfield are analyzed with scatter plots, Q criterion, and vorticity fields. As expected, the strong Reynolds analogy is not valid for this nonadiabatic flow. Streaks and horseshoe-like structures are highlighted and detailed. The authors propose a scenario for the formation of horseshoe-like structures. With large-eddy simulation tools, a dynamic procedure to evaluate the turbulent Prandtl number is required because results are found more accurate and computations more stable. Wall temperature T_ω and pressure p impact are also emphasized on the normalized van Driest velocity u_(VD)~+ profile in the logarithmic region. The classical log law is recovered: u_(VD)~+ = ln(y~+)/k + C with k = 0.41, and a constant C depending on T_ω and p. An analog law is also recovered for the normalized temperature T~+ = Pr_t~(max) ln(y~+)/k + C' with the maximum of the Prandtl number Pr_t~(max). An a priori study on mesh requirements determination for a large range of pressure levels is realized through highly near-wall resolved large-eddy simulation.
机译:利用直接数值模拟和大涡模拟工具研究了可压缩等温壁通道流动。使用高阶,低耗散,带宽优化的加权基本非振荡数值方案进行计算,以描述Navier-Stokes方程的双曲项。周期性超音速通道流直接数值模拟(M = 1.5,Re_τ= 221,T_w = 500 K,T_c = 700 K)用于验证程序和数值方案;针对大涡模拟中动量和能量方程中所需的驱动项,提出了一种基于压降的新子网格项贡献。使用散点图,Q准则和涡度场分析了流场的相干结构。不出所料,强烈的雷诺兹类比对于这种非绝热流是无效的。条纹和马蹄形结构被突出显示并详细显示。作者提出了形成马蹄形结构的方案。使用大型涡流仿真工具,需要动态过程来评估湍流的Prandtl数,因为发现的结果更准确且计算更稳定。在对数区域中归一化的范德瑞斯特速度u_(VD)〜+曲线上也强调了壁温T_ω和压力p冲击。恢复经典对数定律:u_(VD)〜+ = ln(y〜+)/ k + C,其中k = 0.41,并且常数C取决于T_ω和p。对于归一化温度T〜+ = Pr_t〜(max)ln(y〜+)/ k + C',也以普朗特数Pr_t〜(max)的最大值恢复了模拟定律。通过高度近壁分辨大涡模拟,实现了对大范围压力水平的网格需求确定的先验研究。

著录项

  • 来源
    《Journal of propulsion and power》 |2013年第5期|1064-1075|共12页
  • 作者

    David Taieb; Guillaume Ribert;

  • 作者单位

    CORIA-Centre National de la Recherche Scientifique, 76801 Saint-Etienne-du-Rouvray, France INSA de Rouen, Normandie Universite, Technopole du Madrillet, BP 8;

    CORIA-Centre National de la Recherche Scientifique, 76801 Saint-Etienne-du-Rouvray, France INSA de Rouen, Normandie Universite, Technopole du Madrillet, BP 8;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号