首页> 外文期刊>Journal of power sources >Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques
【24h】

Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques

机译:利用计算流体力学技术优化聚合物电解质膜燃料电池的流场

获取原文
获取原文并翻译 | 示例
           

摘要

The purpose of this work was the enhancement of performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by optimising the gas flow distribution system. To achieve this, 3D numerical simulations of the gas flow in the assembly, consisting of the fuel side of the bipolar plate and the anode, were performed using a commercial Computational Fluid Dynamics (CFD) software, the "FLUENT" package. Two types of flow distributors were investigated: a grooved plate with parallel channels of the type commonly used in commercial fuel cells, and a porous material. The simulation showed that the permeability of the gas flow distributor is a key parameter affecting the consumption of reactant gas in the electrodes. Fuel utilisation increased when decreasing the permeability of the flow distributor. In particular, fuel consumption increased significantly when the permeability of the porous material decreased to values below that of the anode. This effect was not observed in the grooved plate, which permeability was higher than that of the anode. Even though the permeability of the grooved plate can be diminished by reducing the width of the channels, values lower than l mm are difficult to attain in practice. The simulation shows that porous materials are more advantageous than grooved p1ates in terms of reactant gas utilisation.
机译:这项工作的目的是通过优化气流分配系统来增强聚合物电解质膜燃料电池(PEMFC)的性能。为此,使用商用计算流体动力学(CFD)软件“ FLUENT”软件包对组件中的气体流动进行了3D数值模拟,其中包括双极板的燃料侧和阳极。研究了两种类型的流量分配器:带有平行通道的带槽板,该通道通常用于商用燃料电池,以及多孔材料。仿真表明,气流分配器的渗透率是影响电极中反应气体消耗的关键参数。当降低流量分配器的渗透率时,燃料利用率会提高。特别地,当多孔材料的渗透率降低到低于阳极的渗透率时,燃料消耗显着增加。在开槽的板中未观察到这种效果,该板的渗透性高于阳极。即使可以通过减小通道的宽度来减小带凹槽的板的渗透性,但实际上难以获得小于1mm的值。模拟表明,在利用反应气体方面,多孔材料比开槽的板有更多优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号