首页> 外文期刊>Journal of power sources >Transient analysis for the cathode gas diffusion layer of PEM fuel cells
【24h】

Transient analysis for the cathode gas diffusion layer of PEM fuel cells

机译:PEM燃料电池阴极气体扩散层的瞬态分析

获取原文
获取原文并翻译 | 示例
           

摘要

A one-dimensional, non-isothermal, two-phase transient model has been developed to study the transient behaviour of water transport in the cathode gas diffusion layer of PEM fuel cells. The effects of four parameters, namely the liquid water saturation at the interface of the gas diffusion layer and flow channels, the proportion of liquid water to all of the water at the interface of the cathode catalyst layer and the gas diffusion layer, the current density, and the contact or wetting angle, on the transient distribution of liquid water saturation in the cathode gas diffusion layer are investigated. Especially, the time needed for liquid water saturation to reach steady state and the liquid water saturation at the interface of the cathode catalyst layer and gas diffusion layer are plotted as functions of the above four parameters. The ranges of water vapour condensation and liquid water evaporation are identified across the thickness of the gas diffusion layer. In addition, the effects of the above four parameters on the steady state distributions of gas phase pressure, water vapour concentration, oxygen concentration and temperature are also presented. It is found that increasing any one of the first three parameters will increase the water saturation at the interface of the catalyst layer and gas diffusion layer, but decrease the time needed for the liquid water saturation to reach steady state. When the liquid water saturation at the interface of the gas diffusion layer and flow channels is high enough (>0.1), the liquid water saturation at steady state is almost uniformly distributed across the thickness of the gas diffusion layer. It is also found that, under the given initial and boundary conditions in this paper, evaporation takes place within the gas diffusion layer close to the channel side and is the major process for water phase change at low current density (<2000 Am~(-2)); condensation occurs close to the catalyst layer side within the gas diffusion layer and dominates the phase change at high current density (>5000 Am~(-2)). For hydrophilic gas diffusion layers, both the time needed for liquid water saturation to reach steady state and the water saturation at the interface of the catalyst layer and gas diffusion layer will increase when the contact angle increases; but for hydrophobic gas diffusion layers, both of them decrease when the contact angle increases.
机译:已开发出一维非等温两相瞬态模型,以研究PEM燃料电池阴极气体扩散层中水传输的瞬态行为。四个参数的影响,即在气体扩散层和流动通道的界面处的液态水饱和度,在阴极催化剂层和气体扩散层的界面处的液态水与所有水的比例,电流密度研究了阴极气体扩散层中液态水饱和度瞬态分布的接触角和润湿角。特别地,将液体水饱和度达到稳态所需的时间以及在阴极催化剂层和气体扩散层的界面处的液体水饱和度绘制为上述四个参数的函数。在气体扩散层的整个厚度范围内确定了水蒸气冷凝和液态水蒸发的范围。此外,还给出了上述四个参数对气相压力,水蒸气浓度,氧气浓度和温度的稳态分布的影响。发现增加前三个参数中的任何一个将增加催化剂层和气体扩散层的界面处的水饱和度,但是减少了液态水饱和度达到稳态所需的时间。当在气体扩散层和流动通道的界面处的液态水饱和度足够高(> 0.1)时,稳态下的液态水饱和度几乎均匀地分布在整个气体扩散层的厚度上。还发现,在给定的初始和边界条件下,蒸发发生在靠近通道侧的气体扩散层内,并且是低电流密度(<2000 Am〜(- 2));在气体扩散层内靠近催化剂层一侧发生凝结,并且在高电流密度(> 5000 Am〜(-2))下控制相变。对于亲水性气体扩散层,当接触角增大时,液态水饱和度达到稳态所需的时间以及催化剂层与气体扩散层的界面处的水饱和度都会增加。但是对于疏水性气体扩散层,当接触角增大时,两者都减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号