首页> 外文期刊>Journal of power sources >One dimensional La_(0.8)Sr_(0.2)Co_(0.2)Fe_(0.8)O_(3-δ)/Ce_(0.8)Gd_(0.2)O_(1.9) nanocomposite cathodes for intermediate temperature solid oxide fuel cells
【24h】

One dimensional La_(0.8)Sr_(0.2)Co_(0.2)Fe_(0.8)O_(3-δ)/Ce_(0.8)Gd_(0.2)O_(1.9) nanocomposite cathodes for intermediate temperature solid oxide fuel cells

机译:用于中温固体氧化物燃料电池的一维La_(0.8)Sr_(0.2)Co_(0.2)Fe_(0.8)O_(3-δ)/ Ce_(0.8)Gd_(0.2)O_(1.9)纳米复合阴极

获取原文
获取原文并翻译 | 示例
       

摘要

One dimensional La_(0.8)Sr_(0.2)Co_(0.2)Fe_(0.8)O_(3-δ) (LSCF) nanorod/Ce_(0.8)Gd_(0.2)O_(1.9)(GDC) nanoparticle composite cathode has been fabricated by infiltrating the GDC precursor solution into LSFC scaffolds consisting of LSCF nanorods prepared with an electrospinning technique. For comparison, LSCF/GDC nanoparticle cathodes are also obtained using the same method. Impedance analysis reveals that nanorod structured LSCF/GDC cathode has a better electrochemical performance than that of the pure nanorod LSCF cathode, achieving a polarization resistance of 0.10 Ω cm~2 at 650 ℃ for the GDC loading of 160 μL, corresponding to about 50 wt.% GDC. Especially, the polarization resistance of nanorod LSCF/GDC cathode with 160 μL loading displays 5 times smaller than that of LSCF/GDC nanoparticle cathode with an optimal GDC loading of 80 μL at 650 ℃, mainly due to its optimal structure with larger LSCF/GDC boundaries and higher porosity. These results imply that LSCF nanorod/GDC nanoparticle composite is a promising cathode material for intermediate temperature solid oxide fuel cell (IT-SOFC).
机译:制备了一维La_(0.8)Sr_(0.2)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)纳米棒/Ce_(0.8)Gd_(0.2)O_(1.9)(GDC)纳米颗粒复合阴极通过将GDC前体溶液渗入由电纺丝技术制备的LSCF纳米棒组成的LSFC支架中。为了比较,还使用相同的方法获得了LSCF / GDC纳米颗粒阴极。阻抗分析表明,纳米棒结构的LSCF / GDC阴极比纯纳米棒LSCF的电化学性能更好,在650℃,160μL的GDC负载下,极化电阻为0.10Ωcm〜2,相当于约50 wt 。%GDC。特别是,负载为160μL的纳米棒LSCF / GDC阴极的极化电阻比650℃下最佳GDC负载为80μL的LSCF / GDC纳米颗粒阴极的极化电阻小5倍,这主要是由于其具有较大的LSCF / GDC的最佳结构边界和较高的孔隙度。这些结果表明,LSCF纳米棒/ GDC纳米颗粒复合材料是用于中温固体氧化物燃料电池(IT-SOFC)的有希望的阴极材料。

著录项

  • 来源
    《Journal of power sources》 |2012年第1期|p.133-139|共7页
  • 作者单位

    School of Chemical Engineering and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Mailbox 1247, Harbin 150001, PR China;

    School of Chemical Engineering and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Mailbox 1247, Harbin 150001, PR China;

    School of Chemical Engineering and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Mailbox 1247, Harbin 150001, PR China;

    School of Chemical Engineering and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Mailbox 1247, Harbin 150001, PR China;

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China,Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing 100190, China;

    School of Chemical Engineering and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Mailbox 1247, Harbin 150001, PR China,Fuel Cell Material Croup, Energy Technology Research Institute. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    La_(0.8)Sr_(0.2)Co_(0.2)Fe_(0.8)O_(3-δ); Ce_(0.8)Gd_(0.2)O_(1.9); composite cathode; infiltrating; electrospinning; intermediate temperature solid oxide fuel cell;

    机译:La_(0.8)Sr_(0.2)Co_(0.2)Fe_(0.8)O_(3-δ);Ce_(0.8)Gd_(0.2)O_(1.9);复合阴极渗透电纺;中温固体氧化物燃料电池;
  • 入库时间 2022-08-18 00:23:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号