首页> 外文期刊>Journal of power sources >One-step electrodeposition of Co0.12Ni1.88S2@Co8S9 nanoparticles on highly conductive TiO2 nanotube arrays for battery-type electrodes with enhanced energy storage performance
【24h】

One-step electrodeposition of Co0.12Ni1.88S2@Co8S9 nanoparticles on highly conductive TiO2 nanotube arrays for battery-type electrodes with enhanced energy storage performance

机译:Co0.12Ni1.88S2@Co8S9纳米粒子的一步电沉积在具有增强的储能性能的电池型电极的高导电TiO2纳米管阵列上

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

High-performance battery-type electrodes based on TiO2 nanotube arrays decorated with Co0.12Ni1.88S2@Co8S9 (CNCS) nanoparticles have been successfully prepared in this paper. The highly conductive TiO2 nanotube arrays modified with carbon and oxygen vacancies (Ti3+ defects) (m-TNAs) are selected as the three-dimensional backbones to support electroactive materials and offer direct pathways for electron and ions transport. Then CNCS nanoparticles are electrodeposited on each nanotube uniformly, and the loading mass of nanoparticles can be controlled through adjusting electrodeposition cycles. After optimization, a remarkable specific capacity of 680.1 C g(-1) is achieved at 2 A g(-1) as a result of the intrinsic synergetic contributions from structural/compositional/componental merits. This specific capacity is much higher than most of the TNAs-based energy storage electrodes. In addition, an asymmetric supercapacitor device is assembled by applying the optimized CNCS/m-TNAs and commercial active carbon as positive and negative electrode, respectively. It displays a high energy density of 45.5 Wh kg(-1) at a power density of 400.5 W kg(-1), after cycling for 3000 cycles at a high current density of 4 A g(-1), the specific capacitance could still remain 85.7%. This self-supported and binder-free CNCS/m-TNAs electrode will be a competitive and promising candidate for the application in energy storage. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文成功地制备了以Co0.12Ni1.88S2@Co8S9(CNCS)纳米粒子为装饰材料的基于TiO2纳米管阵列的高性能电池型电极。选择了用碳和氧空位(Ti3 +缺陷)(m-TNAs)改性的高导电性TiO2纳米管阵列作为三维骨架,以支撑电活性材料并提供电子和离子传输的直接途径。然后将CNCS纳米颗粒均匀地电沉积在每个纳米管上,并可以通过调节电沉积循环来控制纳米颗粒的负载量。经过优化后,由于结构/组成/成分优点的内在协同作用,在2 A g(-1)处实现了显着的比容量680.1 C g(-1)。该比容量比大多数基于TNA的储能电极高得多。另外,通过应用优化的CNCS / m-TNAs和市售活性炭分别作为正极和负极来组装非对称超级电容器。它在400.5 W kg(-1)的功率密度下显示45.5 Wh kg(-1)的高能量密度,在4 A g(-1)的高电流密度下循环3000次后,比电容可以仍然保持85.7%。这种自支撑且无粘合剂的CNCS / m-TNAs电极将成为储能应用中极具竞争力和有希望的候选者。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Journal of power sources》 |2017年第1期|400-409|共10页
  • 作者单位

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China|Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China|Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Anhui, Peoples R China;

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China|Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Anhui, Peoples R China;

    Rice Univ, Dept Mat Sci & Nano Engn, Houston, TX 77005 USA;

    Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China|Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Anhui, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    TiO2 nanotube arrays; Electrodeposition; Co0.12Ni1.88S2@Co8S9 nanoparticles; Asymmetric supercapacitor devices;

    机译:TiO2纳米管阵列;电沉积;Co0.12Ni1.88S2@Co8S9纳米粒子;不对称超级电容器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号