...
首页> 外文期刊>Journal of power sources >Acceleration tests: Degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures
【24h】

Acceleration tests: Degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures

机译:加速测试:阳极支撑的平面固体氧化物燃料电池在高温下的降解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

As the solid oxide fuel cell (SOFC) technology matures, durability under real operating conditions is considered as one of the most critical issues for commercialization. The severe conditions encountered in practical operation include a large temperature gradient and generation of local hot spots within stacks. Herein, we report the degradation mechanisms of anode-supported planar SOFCs supplied by Posco Energy at elevated operating temperatures. A simple comparison of the voltage reduction rates at different operating temperatures does not appropriately represent the degree of degradation, because the rapid deterioration of the cell components at high temperatures is compensated for by the fast reaction and transport kinetics. A combination of impedance interpretation and post-mortem analysis reveals the major degradation processes that are distinctively accelerated by increasing temperature, including the chemical interaction between the cathode and electrolyte, the enlargement of the interfacial pores, the coarsening of the fine particles in the composite electrodes, the formation of interfacial cracks and Cr poisoning. Systematic analysis presented in this study provides guidelines for counteracting the unexpected temperature increase, and the database established under various extreme conditions would form the groundwork for achieving the lifetime goals of commercial SOFC systems. (C) 2017 Elsevier B.V. All rights reserved.
机译:随着固体氧化物燃料电池(SOFC)技术的成熟,在实际操作条件下的耐久性被认为是商业化的最关键问题之一。在实际操作中遇到的严酷条件包括大的温度梯度和烟囱内局部热点的产生。在本文中,我们报告了P​​osco Energy在升高的工作温度下提供的阳极支撑平面SOFC的降解机理。简单比较不同工作温度下的电压降低速率并不能恰当地代表退化的程度,因为高温下电池组件的快速退化可以通过快速的反应和传输动力学来补偿。阻抗解释和事后分析相结合,揭示了温度升高明显加速的主要降解过程,包括阴极与电解质之间的化学相互作用,界面孔的扩大,复合电极中细颗粒的粗化,形成界面裂纹和铬中毒。本研究中提出的系统分析为应对温度意外升高提供了指导,在各种极端条件下建立的数据库将为实现商业SOFC系统的使用寿命目标奠定基础。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Journal of power sources》 |2017年第31期|284-293|共10页
  • 作者单位

    Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

    Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

    Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

    Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

    Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

    Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

    Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

    Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

    Posco Energy, Fuel Cell Technol Inst, Pohang, South Korea;

    Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Degradation; Acceleration test; Coarsening; Chemical interaction; Solid oxide fuel cell;

    机译:降解;加速试验;粗化;化学相互作用;固体氧化物燃料电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号