...
首页> 外文期刊>Journal of power sources >Competition between insertion of Li+ and Mg2+: An example of TiO2-B nanowires for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries
【24h】

Competition between insertion of Li+ and Mg2+: An example of TiO2-B nanowires for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries

机译:Li +和Mg2 +插入之间的竞争:用于Mg可充电电池和Li + / Mg2 +混合离子电池的TiO2-B纳米线的示例

获取原文
获取原文并翻译 | 示例
           

摘要

Titanium dioxide bronze (TiO2-B) nanowires were prepared by the hydrothermal method and used as the positive electrode for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries. First-principles calculations showed that the diffusion barrier for Mg2+ (0.6 eV) in the TiO2-B lattice was more than twice of that for Li+ (0.3 eV). Electrochemical impedance spectroscopy showed that the charge transfer resistance of TiO2-B in the Mg2+ ion electrolyte was much larger than that in the Li+/Mg2+ hybrid electrolyte. For these reasons, the Mg rechargeable battery showed a small discharge capacity of 35 mAh g(-1) resulting from an electrochemical double-layer capacitive process. In comparison, the TiO2-B nanowires exhibited a large capacity (242 mAh g(-1) at the 20 mA g(-1) current density), high rate capability (114 mAh g(-1) at 1 A g(-1)), and excellent cycle stability in the Li+/Mg2+ hybrid-ion battery. The dominant reaction occurred in the TiO2-B electrode was intercalation of Li+ ions, of which about 74% of the total capacity was attributed to Li+ pseudo-capacitance. (C) 2017 Elsevier B.V. All rights reserved.
机译:采用水热法制备了二氧化钛青铜(TiO2-B)纳米线,并用作镁可充电电池和Li + / Mg2 +混合离子电池的正极。第一性原理计算表明,Mg2 +(0.6 eV)在TiO2-B晶格中的扩散势垒是Li +(0.3 eV)的两倍多。电化学阻抗谱显示,Mg2 +离子电解质中TiO2-B的电荷转移电阻远大于Li + / Mg2 +杂化电解质中的电荷转移电阻。由于这些原因,Mg可充电电池由于电化学双层电容过程而显示出35 mAh g(-1)的小放电容量。相比之下,TiO2-B纳米线表现出大容量(在20 mA g(-1)电流密度下为242 mAh g(-1)),高倍率容量(在1 A g(-时为114 mAh g(-1)) 1)),以及Li + / Mg2 +混合离子电池优异的循环稳定性。在TiO2-B电极中发生的主要反应是Li +离子的插入,其中约74%的总容量归因于Li +假电容。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Journal of power sources》 |2017年第1期|134-142|共9页
  • 作者单位

    Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China;

    Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China;

    Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China|Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Titanium dioxide bronze; Positive electrode; Magnesium ion battery; Hybrid-ion battery; First-principles calculations; Electrochemical properties;

    机译:二氧化钛青铜;正电极;镁离子电池;混合离子电池;第一性原理计算;电化学性能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号