首页> 外文学位 >Enhancement of Li+ ion Tranport in High Energy Solid State Li-ion Batteries.
【24h】

Enhancement of Li+ ion Tranport in High Energy Solid State Li-ion Batteries.

机译:高能固态锂离子电池中Li +离子传输的增强。

获取原文
获取原文并翻译 | 示例

摘要

Li-ion battery (LIB) is one of the major candidates for the future form of the energy storage system. However, the ignitability of organic liquid electrolyte is the primary obstacle for the large scale-up of LIB systems. Solid state Li-ion batteries (SSLIBs) with nonflammable solid state electrolytes (SSEs) are expected to be one of the solutions. Nevertheless, SSLIBs suffer from fast degradation and low power density because of limitations at interfaces in SSLIBs. This dissertation demonstrates efforts to address interfacial limitations in SSLIBs. Al2O3 atomic layer deposition (ALD) on a high voltage cathode material successfully reduces the resistive layer growth at active material/SSE interfaces during battery cycling. In addition, thermal treatment of Al2O3 ALD layer around active material particles utilizes Al2O3 ALD layer as Li+ ion pathway providing additional access to Li+ ion intercalation sites on active material which will induce an increase in energy. Employing gradients of SSE portion in working electrodes and the combination of enhanced electrodes are described in the latter part of this dissertation as continuing studies toward the commericialization of SSLIBs with stable cycling and high energy/power density. This dissertation provides effective strategies to overcome interfacial issues in SSLIBs, aiming for the goal to outperform current LIBs.
机译:锂离子电池(LIB)是未来储能系统形式的主要候选者之一。然而,有机液体电解质的可燃性是大规模扩大LIB系统的主要障碍。解决方案之一是带有不可燃固态电解质(SSE)的固态锂离子电池(SSLIB)。然而,由于SSLIB中接口的限制,SSLIB具有快速降级和低功率密度的缺点。本文证明了解决SSLIBs界面限制的努力。高电压阴极材料上的Al2O3原子层沉积(ALD)成功减少了电池循环期间活性材料/ SSE界面处的电阻层生长。另外,对活性材料颗粒周围的Al2O3 ALD层进行热处理时,将Al2O3 ALD层用作Li +离子通道,从而提供了额外的途径进入活性材料上的Li +离子插入位点,从而导致能量增加。在本文的后半部分描述了在工作电极中采用SSE部分的梯度以及增强电极的组合,作为对具有稳定循环和高能量/功率密度的SSLIBs商业化的持续研究。本文旨在为克服SSLIBs中的界面问题提供有效的策略,旨在超越目前的LIBs。

著录项

  • 作者

    Woo, Jae Ha.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号