首页> 外文期刊>Journal of power sources >Surface and interface engineering of anatase TiO_2 anode for sodium-ion batteries through Al_2O_3 surface modification and wise electrolyte selection
【24h】

Surface and interface engineering of anatase TiO_2 anode for sodium-ion batteries through Al_2O_3 surface modification and wise electrolyte selection

机译:通过Al_2O_3表面改性和明智的电解质选择用于钠离子电池的锐钛矿型TiO_2阳极的表面和界面工程。

获取原文
获取原文并翻译 | 示例
       

摘要

In the present study, Al2O3 is utilized for the first time as coating agent on nanostructured anatase TiO2 in order to investigate its effect on sodium-ion batteries performance. Our results show that the Al2O3 coating, introduced by a facile two-step approach, provides beneficial effects to the TiO2-based anodes. However, the coated TiO2 still suffers of capacity fading upon cycling when using 1.0 M of NaClO4 in propylene carbonate (PC) as electrolyte. To address this issue, the influence of different electrolytes (NaClO4 salt in various solvents) is further studied. It is found that the modified TiO2 exhibits significant improvements in cycling performance using binary ethylene carbonate (EC) and PC solvent mixture without the need of the commonly used fluoroethylene carbonate (FEC) additive. Under the best configuration, our battery could deliver a high reversible capacity of 188.1 mAh g(-1) at 0.1C after 50 cycles, good rate capability up to 5C, and remarkable long-term cycling stability at 1C rate for 650 cycles. This excellent performance can be ascribed to the synergistic effects of surface and interface engineering enabling the formation of a stable and highly ionic conductive interface layer in EC:PC based electrolyte which combines the native SEI film and an 'artificial' SEI layer of irreversibly formed Na - Al - O.
机译:在本研究中,Al2O3首次被用作纳米结构锐钛矿型TiO2的涂层剂,以研究其对钠离子电池性能的影响。我们的结果表明,通过简便的两步法引入的Al2O3涂层可为TiO2基阳极提供有益的影响。但是,当在碳酸亚丙酯(PC)中使用1.0 M的NaClO4作为电解质时,涂覆的TiO2在循环时仍会遭受容量衰减的影响。为解决此问题,进一步研究了不同电解质(各种溶剂中的NaClO4盐)的影响。发现使用二元碳酸亚乙酯(EC)和PC溶剂混合物,改性的TiO2表现出循环性能的显着改善,而无需通常使用的氟代碳酸亚乙酯(FEC)添加剂。在最佳配置下,我们的电池可在50次循环后在0.1C下提供188.1 mAh g(-1)的高可逆容量,高达5C的良好倍率能力以及在650个循环下以1C倍率具有出色的长期循环稳定性。这种优异的性能可归因于表面和界面工程的协同效应,可在基于EC:PC的电解质中形成稳定且高度离子化的导电界面层,该界面结合了天然SEI膜和不可逆形成的Na的“人工” SEI层-Al-O

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号