首页> 外文期刊>Journal of power sources >High-performance boron-doped silicon micron-rod anode fabricated using a mass-producible lithography method for a lithium ion battery
【24h】

High-performance boron-doped silicon micron-rod anode fabricated using a mass-producible lithography method for a lithium ion battery

机译:使用用于锂离子电池的大量生产光刻方法制造高性能硼掺杂硅片阳极阳极

获取原文
获取原文并翻译 | 示例
           

摘要

Although silicon (Si) attracts great attention as a high-capacity anode material in lithium ion batteries (LiBs), a large volume being expanded during charge/discharge (de/lithiation) cycling is a significant problem resulting in a fast capacity fade. To prevent the problem, a variety of Si structures with nano/microscales have been incorporated into the anode, but such structures still have difficulties in terms of mass production. Herein, we present a new way to repetitively produce micron boron (B)-doped Si rods from Si wafer through laser interference lithography (LIL) in combination with the metal assisted chemical etching (MACE) process, enabling the mass-production of multiple Si rods at low cost. Moreover, the effects of the B-doping level of the produced Si rods on the electrochemical LiB performances are studied in detail. As a result, the lightly B-doped Si rod (similar to 10(15) atoms cm(-3)) anodes exhibit the highest initial capacity of 3524 mAh g(-1) and cyclic performance, showing a high average Coulombic efficiency (CE) of 98.1% and a capacity fading rate (per cycle) of 0.11% during 500 cycles. It is due to the highest kinetics of de/lithiation on the surface of the lightly B-doped Si rod attributed to favorable phase transition of Si and diffusion of Li ions.
机译:虽然硅(Si)吸引了锂离子电池(LIBS)中的高容量阳极材料的极大关注,但在充电/放电(DE / LITHIALIAL)循环期间扩展的大体积是一个显着的问题,导致快速的容量淡出。为了防止问题,已经将各种具有纳米/微观的Si结构掺入阳极中,但是这种结构在批量生产方面仍然存在困难。这里,我们提出了一种通过激光干扰光刻(LIL)与金属辅助化学蚀刻(MACE)工艺组合的重复生产微米硼(B) - 从Si晶片生产微米硼(B)的Si棒的新方法,从而实现多个Si的大规模生产杆以低成本。此外,详细研究了所产生的Si棒对电化学Lib性能的B掺杂水平的影响。结果,轻质B掺杂的Si棒(类似于10(15)个原子Cm(-3))阳极表现出3524mAhg(-1)和循环性能的最高初始容量,显示出高平均库仑效率( CE)在500次循环期间98.1%和98.1%的容量衰落率(每循环)为0.11%。它是由于归因于Si和Li离子的扩散的良好相位转变的轻质B掺杂Si杆的DE / LITHIALIAL的最高动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号