...
首页> 外文期刊>Journal of power sources >Incorporation of amorphous TiO_2 into one-dimensional SnO_2 nanostructures as superior anodes for lithium-ion batteries
【24h】

Incorporation of amorphous TiO_2 into one-dimensional SnO_2 nanostructures as superior anodes for lithium-ion batteries

机译:将无定形TiO_2掺入一维SnO_2纳米结构中作为锂离子电池的高级阳极

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-ion batteries (LIBs) with higher energy density are necessary to meet the increasing demands of energy storage system (ESS) in near future. Tin (IV) oxide, SnO2, is one of highly promising anode candidates due to its high theoretical capacity (782 mAh g−1), abundance, environmental friendliness, and safety with organic electrolytes. However, a rapid capacity fading and poor rate capabilities arising from the large volume expansion and subsequent agglomeration of Sn nanoparticles have been major issues of SnO2. Here, we have synthesized one-dimensional (1D) SnO2-amorphous titanium (IV) oxide NTs (SnO2-a-TiO2NTs), which allow both facile ionic and electron transport as well as easy penetration of electrolytes. The resultant SnO2-a-TiO2NTs not only alleviate volume expansion by maintaining their structural integrity but also possess minimal charge transfer resistance even after a number of cycles. SnO2-a-TiO2NTs exhibit both excellent cycle retention characteristics (1050.2 mAh g−1after 250 cycles) and outstanding rate capability (522.3 mAh g−1at a current density of 5000 mA g−1), which is attributed to the introduction of amorphous TiO2that not only acts as buffer agent for volume changes of SnO2but also allows fast surface-controlled diffusion process due to its pseudocapacitive charge storage mechanisms.
机译:具有高能量密度的锂离子电池(LIB)是满足不久的将来对储能系统(ESS)不断增长的需求所必需的。氧化锡(IV)SnO2由于其高理论容量(782 mAh g-1),丰度,环境友好性以及与有机电解质的安全性,是极有希望的阳极候选材料之一。然而,由于锡纳米颗粒的大体积膨胀和随后的附聚而引起的快速容量衰减和差的速率容量已经成为SnO 2的主要问题。在这里,我们合成了一维(1D)SnO2-非晶钛(IV)氧化物NTs(SnO2-a-TiO2NTs),该离子可以方便地进行离子和电子传输,并易于渗透电解质。所得的SnO2-a-TiO2NTs不仅通过保持其结构完整性来减轻体积膨胀,而且即使经过多个循环也具有最小的电荷转移阻力。 SnO2-a-TiO2NTs具有出色的循环保持特性(250次循环后为1050.2 mAh g-1)和出色的倍率能力(电流密度为5000 mA g-1时为522.3 mAh g-1),这归因于非晶态TiO2的引入。不仅用作SnO2体积变化的缓冲剂,而且由于其伪电容电荷存储机制,还可以实现快速的表面控制扩散过程。

著录项

  • 来源
    《Journal of power sources》 |2018年第1期|485-492|共8页
  • 作者单位

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

    Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tin (IV) oxide; Titanium (IV) oxide; Lithium; Nanotubes; Porous; Anode;

    机译:氧化锡(IV);氧化钛(IV);锂;纳米管;多孔;阳极;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号