...
首页> 外文期刊>Journal of Porphyrins and Phthalocyanines >Through space singlet energy transfers in light-harvesting systems and cofacial bisporphyrin dyads
【24h】

Through space singlet energy transfers in light-harvesting systems and cofacial bisporphyrin dyads

机译:通过光捕获系统中的空间单线态能量转移和双壁双卟啉二联体

获取原文
获取原文并翻译 | 示例
           

摘要

Recent discoveries from our research groups on the photophysics of a few cofacial bisporphyrin dyads for through space singlet and triplet energy transfers raised several important investigations about the mechanism of energy transfers and energy migration in light-harvesting devices, notably LH II, in the heavily investigated purple photosynthetic bacteria. The key feature is that for face-to-face and slipped dyads with controlled structure using rigid spacers or spacers with limited flexibilities, our fastest rates for singlet energy transfer are in the 10 × 109 s-1 (i.e. 100 ps time scale) for donor-acceptor distances of ~3.5–3.6 Å. The time scale for energy transfers between different bacteriochlorophylls, notably B800*→B850, is in the ps despite the long Mg⋯Mg separation (~18 Å). This short rate drastically contrasts with the well-accepted Förster theory. This review focuses on the photophysical processes and dynamics in LH II and compares these parameters with our investigated model dyads build upon octa-etio-porphyrin chromophores and rigid and semi-rigid spacers. The recently discovered role of the rhodopin glucoside (carotenoid) will be analyzed as possible relay for energy transfers, including the possibility of uphill processes at room temperature. In this context the concept of energy migration may be complemented by parallel relays and uphill processes. It is also becoming more obvious that the irreversible electron transfer at the reaction center (electron transfer from the special pair to the phaeophytin) renders the rates for energy transfer and migration faster precluding all possibility of back transfers.
机译:我们研究小组对一些通过空间单重态和三重态能量转移的双壁卟啉双色子的光物理研究的最新发现,在受到大量研究的光收集设备中,特别是LH II中,对能量转移和能量迁移的机理进行了一些重要研究。紫色光合细菌。关键特征是,对于使用刚性间隔物或柔韧性有限的间隔物具有受控结构的面对面和滑动的二元组,我们最快的单重态能量传递速率为10×109 s-1(即100 ps时标),供体-受体距离约为3.5-3.6Å。尽管存在长的Mg separationMg分离(〜18Å),但不同细菌叶绿素(尤其是B800 *→B850)之间能量转移的时间尺度以ps为单位。这种短期利率与公认的福斯特理论形成了鲜明的对比。这篇综述着重于LH II的光物理过程和动力学,并将这些参数与我们研究的基于八-卟啉卟啉生色团和刚性和半刚性间隔基的二元组进行了比较。将分析杜鹃糖苷(类胡萝卜素)的最新发现作用,作为能量转移的可能中继,包括在室温下上坡过程的可能性。在这种情况下,可以通过并联继电器和上坡过程来补充能量迁移的概念。越来越明显的是,在反应中心发生不可逆的电子转移(电子从特殊对转移到Phophphytin的电子转移)使能量转移和迁移的速度更快,从而排除了所有反向转移的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号