首页> 外文期刊>Journal of pipeline engineering >Will fractures propagate in a leaking CO_2 pipeline?
【24h】

Will fractures propagate in a leaking CO_2 pipeline?

机译:裂缝会在泄漏的CO_2管道中扩散吗?

获取原文
获取原文并翻译 | 示例
       

摘要

AHYPOTHETICAL CONCERN has been raised that leaks in a CO_2 pipeline could escalate to a propagating fracture.This is due to the potentially large temperature drop associated with the expansion of either gaseous or dense-phase CO_2 to ambient conditions. It is suggested this local cooling would lower the pipe wall temperature to an extent that a brittle fracture would initiate followed by a transition to a propagating fracture. Although such a mechanism could theoretically occur in natural gas pipelines, there is increased concern for CO_2 transport because of the different thermodynamic behaviour of the contents, particularly for dense-phase transport. This paper critically reviews the literature associated with this postulated failure mechanism and other studies on the cooling of cracks and holes by escaping fluid. It is concluded that pipelines constructed to modern standards are not at risk. Limited crack extension may occur when the leak is through a 'tight' crack in a material of low toughness. However, the crack will arrest as it enters warmer material remote from the leak. Escalation to a propagating fracture can be controlled using methods which are widely used and understood in the pipeline industry.
机译:引起人们的担忧的是,CO_2管道中的泄漏可能升级为正在传播的裂缝,这是由于与气相或密相CO_2膨胀到环境条件相关的潜在大的温度下降。建议这种局部冷却将使管壁温度降低到一定程度,使脆性断裂开始,然后过渡到传播性断裂。尽管从理论上讲这种机制可能发生在天然气管道中,但由于内容物的热力学行为不同,特别是对于密相运输,人们对CO_2的运输越来越关注。本文对与这种假定的失效机理有关的文献进行了严格的回顾,并对通过逸出流体冷却裂纹和孔洞的其他研究进行了回顾。可以得出结论,按照现代标准建造的管道没有风险。当泄漏通过低韧性材料中的“紧密”裂纹时,可能会出现有限的裂纹扩展。但是,当裂纹进入远离泄漏点的较热材料时,裂纹将被阻止。可以使用在管道工业中广泛使用和理解的方法来控制升级为正在传播的裂缝。

著录项

  • 来源
    《Journal of pipeline engineering》 |2010年第4期|p.277-283285-287|共10页
  • 作者单位

    BMT Fleet Technology, Loughborough, UK;

    Pipeline Integrity Engineers, Newcastle upon Tyne, UK;

    National Grid Gas Transmission, Warwick, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:11:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号