首页> 外文期刊>Journal of Physical Oceanography >Effects of Wave Breaking on the Near-Surface Profiles of Velocity and Turbulent Kinetic Energy
【24h】

Effects of Wave Breaking on the Near-Surface Profiles of Velocity and Turbulent Kinetic Energy

机译:波浪破碎对速度和湍动能近表面轮廓的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A theoretical model for the near-surface velocity profile in the presence of breaking waves is presented. Momentum is accumulated by growing waves and is released upon wave breaking. In effect, such a transition is a process involving a time-dependent surface stress acting on the mean current. In this paper, conventional theory for the Stokes drift is expanded to fourth-order accuracy in wave steepness. It is shown that the higher-order terms lead to an enhancement of the surface Stokes drift and a slight retardation of the Stokes volume flux. Furthermore, the results from the wave theory are used to obtain a bulk parameterization of momentum exchange during the process of wave breaking. The mean currents are then obtained by application of a variation of the "level 2.5" turbulence closure theory of Mellor and Yamada. When compared with the traditional approach of a constant surface stress, the mean Eulerian current exhibits a weak enhancement in the near-surface region, compensated by a negative shift deeper in the water column. However, it is found that the results of Craig and Banner and the results of Craig are not significantly affected by the present theory. Hence, this study helps to explain why the Craig and Banner model agrees well with observations when a realistic, time-varying surface stress acts on the drift currents.
机译:提出了在存在破波的情况下近地表速度剖面的理论模型。动量通过不断增长的波浪而积累,并在波浪破裂时释放。实际上,这种过渡是一个过程,该过程涉及作用于平均电流的随时间变化的表面应力。本文将传统的斯托克斯漂移理论扩展到波陡度的四阶精度。结果表明,高阶项导致表面斯托克斯漂移的增加和斯托克斯体积通量的轻微延迟。此外,波动理论的结果被用于在波动过程中获得动量交换的整体参数化。然后,通过应用Mellor和Yamada的“ 2.5级”湍流闭合理论的变化获得平均电流。与传统的恒定表面应力方法相比,平均欧拉电流在近地表区域表现出微弱的增强,这被水柱中更深的负位移所补偿。但是,发现该理论不会对Craig和Banner的结果以及Craig的结果产生重大影响。因此,这项研究有助于解释当真实的,随时间变化的表面应力作用于漂移电流时,Craig and Banner模型为何与观察结果吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号