...
首页> 外文期刊>Journal of Physical Oceanography >Oceanic Turbulent Energy Budget using Large-Eddy Simulation of a Wind Event during DYNAMO
【24h】

Oceanic Turbulent Energy Budget using Large-Eddy Simulation of a Wind Event during DYNAMO

机译:DYNAMO期间利用风场的大涡模拟模拟海洋湍流能量收支

获取原文
获取原文并翻译 | 示例

摘要

The dominant processes governing ocean mixing during an active phase of the Madden-Julian oscillation are identified. Air-sea fluxes and upper-ocean currents and hydrography, measured aboard the R/V Revelle during boreal fall 2011 in the Indian Ocean at 0 degrees, 80.5 degrees E, are integrated by means of a large-eddy simulation (LES) to infer mixing mechanisms and quantify the resulting vertical property fluxes. In the simulation, wind accelerates the mixed layer, and shear mixes the momentum downward, causing the mixed layer base to descend. Turbulent kinetic energy gains due to shear production and Langmuir circulations are opposed by stirring gravity and frictional losses. The strongest stirring of buoyancy follows precipitation events and penetrates to the base of the mixed layer. The focus here is on the initial 24 h of an unusually strong wind burst that began on 24 November 2011. The model shows that Langmuir turbulence influences only the uppermost few meters of the ocean. Below the wave-energized region, shear instability responds to the integrated momentum flux into the mixed layer, lagging the initial onset of the storm. Shear below the mixed layer persists after the storm has weakened and decelerates the surface jet slowly (compared with the acceleration at the peak of the storm). Slow loss of momentum from the mixed layer extends the effect of the surface wind burst by energizing the fluid at the base of the mixed layer, thereby prolonging heat uptake due to the storm. Ocean turbulence and air-sea fluxes contribute to the cooling of the mixed layer approximately in the ratio 1:3, consistent with observations.
机译:确定了在Madden-Julian振荡活跃阶段控制海洋混合的主要过程。通过大涡模拟(LES)对印度洋2011年北方秋季在0度,80.5度东经R / V Revelle测得的海-气通量,洋流和水文学进行了推论混合机制并量化最终的垂直特性通量。在模拟中,风加速了混合层,并且剪切力将动量向下混合,导致混合层的基面下降。由于产生剪切力和朗缪尔环流而产生的湍动能增加被搅拌重力和摩擦损失所抵消。沉淀事件发生后,浮力的最强搅拌,并渗透到混合层的底部。这里的重点是从2011年11月24日开始的异常强风爆发的最初24小时。该模型显示,朗缪尔湍流仅影响海洋的最上方几米。在波浪激发的区域下方,剪切不稳定性响应于进入混合层的积分动量通量,滞后于风暴的初始发作。风暴减弱后,混合层以下的剪切仍然存在,并缓慢地使表面射流减速(与风暴高峰时的加速度相比)。混合层动量的缓慢损失通过向混合层底部的流体供能,扩展了表面风爆发的效果,从而延长了风暴带来的热量吸收。与观察结果一致,海洋湍流和海-气通量对混合层的冷却作用大约为1:3。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号