首页> 外文期刊>Journal of offshore mechanics and arctic engineering >Multi-objective shape optimization design for liquefied natural gas cryogenic helical corrugated steel pipe
【24h】

Multi-objective shape optimization design for liquefied natural gas cryogenic helical corrugated steel pipe

机译:液化天然气低温螺旋波纹钢管的多目标形状优化设计

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, the flexible cryogenic hose has been preferred as an alternative to exploit offshore liquefied natural gas (LNG), in which helical corrugated steel pipe is the crucial component with C-shaped corrugation. Parametric finite element models of the LNG cryogenic helical corrugated pipe are established using a three-dimensional shell element in this paper. Considering the nonlinearity of cryogenic material and large geometric structural deformation, mechanical behaviors are simulated under axial tension, bending, and internal pressure loads. In addition, design parameters are determined to optimize the shape of flexible cryogenic hose structures through sectional dimension analysis, and sensitivity analysis is performed with changing geometric parameters. A multi-objective optimization to minimize stiffness and stress is formulated under operation conditions. Full factorial experiment and radial basis function (RBF) neural network are applied to establish the approximated model for structure analysis. The set of Pareto optimal solutions and value range of parameters are obtained through nondominated sorting genetic algorithm II (NSGA-II) under manufacturing and stiffness constraints, thereby providing a feasible optimal approach for the structural design of LNG cryogenic corrugated hose.
机译:近来,挠性低温软管已成为替代开发海上液化天然气(LNG)的首选,其中螺旋波纹钢管是C形波纹的重要组成部分。本文利用三维壳单元建立了LNG低温螺旋波纹管的参数化有限元模型。考虑到低温材料的非线性和较大的几何结构变形,在轴向张力,弯曲和内部压力载荷下模拟了力学行为。另外,通过截面尺寸分析确定设计参数以优化柔性低温软管结构的形状,并通过改变几何参数进行灵敏度分析。在运行条件下制定了多目标优化,以最大程度地降低刚度和应力。应用全因子实验和径向基函数(RBF)神经网络建立结构分析的近似模型。在制造和刚度约束下,通过非支配排序遗传算法II(NSGA-II)获得了一组Pareto最优解和参数值范围,从而为LNG低温波纹软管的结构设计提供了一种可行的最优方法。

著录项

  • 来源
    《Journal of offshore mechanics and arctic engineering》 |2017年第5期|051703.1-051703.11|共11页
  • 作者单位

    State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, China;

    State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, China;

    State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian, China;

    State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Ocean Science and Technology, Dalian University of Technology, 2 Dagong Road, Panjin, China;

    State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Ocean Science and Technology, Dalian University of Technology, 2 Dagong Road, Panjin, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号