首页> 外文期刊>Journal of neural engineering >A practical guide to methodological considerations in the controllability of structural brain networks
【24h】

A practical guide to methodological considerations in the controllability of structural brain networks

机译:结构脑网络可控制性中方法学考虑的实用指南

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Objective. Predicting how the brain can be driven to specific states by means of internal or externalcontrol requires a fundamental understanding of the relationship between neural connectivityand activity. Network control theory is a powerful tool from the physical and engineering sciencesthat can provide insights regarding that relationship; it formalizes the study of how the dynamicsof a complex system can arise from its underlying structure of interconnected units. Approach.Given the recent use of network control theory in neuroscience, it is now timely to offer a practicalguide to methodological considerations in the controllability of structural brain networks. Herewe provide a systematic overview of the framework, examine the impact of modeling choices onfrequently studied control metrics, and suggest potentially useful theoretical extensions. We groundour discussions, numerical demonstrations, and theoretical advances in a dataset of high-resolutiondiffusion imaging with 730 diffusion directions acquired over approximately 1 h of scanning fromten healthy young adults. Main results. Following a didactic introduction of the theory, we probehow a selection of modeling choices affects four common statistics: average controllability, modalcontrollability, minimum control energy, and optimal control energy. Next, we extend the currentstate-of-the-art in two ways: first, by developing an alternative measure of structural connectivitythat accounts for radial propagation of activity through abutting tissue, and second, by defininga complementary metric quantifying the complexity of the energy landscape of a system. Weclose with specific modeling recommendations and a discussion of methodological constraints.Significance. Our hope is that this accessible account will inspire the neuroimaging community tomore fully exploit the potential of network control theory in tackling pressing questions in cognitive,developmental, and clinical neuroscience.
机译:目的。预测如何通过内部或外部控制将大脑驱动到特定状态,需要对神经连接性和活动之间的关系有基本的了解。网络控制理论是物理科学和工程学的有力工具,可以提供有关这种关系的见解;它正式研究了复杂系统如何从互连单元的基础结构中产生动力。方法:鉴于网络控制理论在神经科学领域的最新应用,现在就为结构性大脑网络的可控制性中的方法学考虑提供实用指南。在此,我们提供了该框架的系统概述,研究了建模选择对经常研究的控制指标的影响,并提出了可能有用的理论扩展。我们在高分辨率扩散成像数据集中进行了讨论,数值演示和理论进展,这些数据具有730个扩散方向,是在大约1小时的扫描时间内从健康的年轻成年人那里获得的。主要结果。在对理论进行了有说服力的介绍之后,我们探讨了建模选择的选择如何影响四个共同的统计数据:平均可控性,模态可控性,最小控制能和最佳控制能。接下来,我们以两种方式扩展当前的最新技术水平:首先,通过开发一种结构连通性的替代方法,以解决通过邻接组织的活动径向传播的问题,其次,通过定义量化能量格局复杂性的补充指标一个系统。本文以具体的建模建议和方法论约束的讨论作为结尾。我们的希望是,这种可访问的帐户将激发神经影像学界更充分地利用网络控制理论在解决认知,发育和临床神经科学中紧迫问题方面的潜力。

著录项

  • 来源
    《Journal of neural engineering》 |2020年第2期|026031.1-026031.20|共20页
  • 作者单位

    Faculty of Medicine Department of Psychiatry Psychotherapy and Psychosomatics RWTH Aachen Germany Department of Bioengineering School of Engineering & Applied Science University of Pennsylvania Philadelphia PA 19104 United States of America;

    Department of Bioengineering School of Engineering & Applied Science University of Pennsylvania Philadelphia PA 19104 United States of America;

    Department of Neuroscience Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 United States of America;

    Department of Mechanical Engineering University of California Riverside CA 92521 United States of America;

    Faculty of Medicine Department of Psychiatry Psychotherapy and Psychosomatics RWTH Aachen Germany JARA-Translational Brain Medicine Aachen Germany Institute of Neuroscience and Medicine JARA-Institute Brain Structure Function Relationship (INM 10) Research Center Jülich Jülich Germany;

    Department of Bioengineering School of Engineering & Applied Science University of Pennsylvania Philadelphia PA 19104 United States of America Department of Physics and Astronomy College of Arts & Sciences University of Pennsylvania Philadelphia PA 19104 United States of America Department of Neurology Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 United States of America Department of Psychiatry Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 United States of America Department of Electrical and Systems Engineering School of Engineering & Applied Science University of Pennsylvania Philadelphia PA 19104 United States of America Santa Fe Institute Santa Fe NM 87501 United States of America;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    network neuroscience; control theory; structural connectivity; diffusion imaging;

    机译:网络神经科学控制理论结构连通性;扩散成像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号