首页> 外文期刊>Journal of neural engineering >Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands
【24h】

Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands

机译:使用笛卡尔和关节速度命令对虚拟范围和姿势进行闭环皮质控制

获取原文
获取原文并翻译 | 示例
       

摘要

Objective. Brain-computer interfaces (BCIs) are a promising technology for the restoration of function to people with paralysis, especially for controlling coordinated reaching. Typical BCI studies decode Cartesian endpoint velocities as commands, but human arm movements might be better controlled in a joint-based coordinate frame, which may match underlying movement encoding in the motor cortex. A better understanding of BCI controlled reaching by people with paralysis may lead to performance improvements in brain-controlled assistive devices. Approach. Two intracortical BCI participants in the BrainGate2 pilot clinical trial performed a visual 3D endpoint virtual reality reaching task using two decoders: Cartesian and joint velocity. Task performance metrics (i.e. success rate and path efficiency) and single feature and population tuning were compared across the two decoder conditions. The participants also demonstrated the first BCI control of a fourth dimension of reaching, the arm's swivel angle, in a 4D posture matching task. Main results. Both users achieved significantly higher success rates using Cartesian velocity control, and joint controlled trajectories were more variable and significantly more curved. Neural tuning analyses showed that most single feature activity was best described by a Cartesian kinematic encoding model, and population analyses revealed only slight differences in aggregate activity between the decoder conditions. Simulations of a BCI user reproduced trajectory features seen during closed-loop joint control when assuming only Cartesian-tuned features passed through a joint decoder. With minimal training, both participants controlled the virtual ann's swivel angle to complete a 4D posture matching task, and achieved significantly higher success using a Cartesian + swivel velocity decoder compared to a joint velocity decoder. Significance. These results suggest that Cartesian velocity command interfaces may provide better BCE control of arm movements than other kinematic variables, even in 4D posture tasks with swivel angle targets.
机译:目的。脑机接口(BCI)是一种有前途的技术,可帮助瘫痪者恢复功能,尤其是控制协调的伸手。典型的BCI研究将笛卡尔端点速度解码为命令,但是在基于关节的坐标系中可以更好地控制人的手臂运动,这可能与运动皮质中的基础运动编码匹配。更好地了解瘫痪者控制BCI的范围可能会导致脑控辅助设备的性能提高。方法。 BrainGate2试点临床试验中的两名皮质BCI参与者使用两个解码器(笛卡尔和关节速度)执行了可视3D端点虚拟现实到达任务。在两个解码器条件下比较了任务性能指标(即成功率和路径效率)以及单个功能和总体调整。参与者还演示了在4D姿势匹配任务中对到达的第四维度(手臂的旋转角度)的第一个BCI控制。主要结果。两位用户使用笛卡尔速度控制都获得了显着更高的成功率,并且关节控制的轨迹变化更大,弯曲程度也更大。神经调整分析表明,笛卡尔运动编码模型可以最好地描述大多数单个特征活动,而总体分析表明,解码器条件之间的聚合活动仅存在细微差异。 BCI用户的模拟重现了闭环联合控制期间看到的轨迹特征(假设仅经过笛卡尔调整的特征通过联合解码器)。只需最少的培训,两名参与者就可以控制虚拟ann的旋转角度来完成4D姿势匹配任务,并且与联合速度解码器相比,使用笛卡尔+旋转速度解码器可以获得更高的成功率。意义。这些结果表明,即使在具有旋转角度目标的4D姿势任务中,笛卡尔速度命令界面也可能比其他运动学变量提供更好的BCE手臂运动控制。

著录项

  • 来源
    《Journal of neural engineering》 |2019年第2期|026011.1-026011.14|共14页
  • 作者单位

    Case Western Reserve Univ, Cleveland, OH 44106 USA|Louis Stokes Cleveland, FES Ctr Excellence, Dept VA Med Ctr, Rehabil R&D Serv, Cleveland, OH 44106 USA;

    Case Western Reserve Univ, Cleveland, OH 44106 USA|Louis Stokes Cleveland, FES Ctr Excellence, Dept VA Med Ctr, Rehabil R&D Serv, Cleveland, OH 44106 USA|Stanford Univ, Dept Neurosurg, Stanford, CA 94305 USA|Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA;

    Case Western Reserve Univ, Cleveland, OH 44106 USA|Louis Stokes Cleveland, FES Ctr Excellence, Dept VA Med Ctr, Rehabil R&D Serv, Cleveland, OH 44106 USA;

    Case Western Reserve Univ, Cleveland, OH 44106 USA;

    Stanford Univ, Dept Neurosurg, Stanford, CA 94305 USA;

    Louis Stokes Cleveland, FES Ctr Excellence, Dept VA Med Ctr, Rehabil R&D Serv, Cleveland, OH 44106 USA|UH Cleveland Med Ctr, Neurol, Cleveland, OH USA|CWRU Sch Med, Neurol, Cleveland, OH USA;

    Louis Stokes Cleveland, FES Ctr Excellence, Dept VA Med Ctr, Rehabil R&D Serv, Cleveland, OH 44106 USA|UH Cleveland Med Ctr, Neurosurg, Cleveland, OH USA|CWRU Sch Med Cleveland, Neurol Surg, Cleveland, OH USA;

    Louis Stokes Cleveland, FES Ctr Excellence, Dept VA Med Ctr, Rehabil R&D Serv, Cleveland, OH 44106 USA|UH Cleveland Med Ctr, Neurosurg, Cleveland, OH USA|CWRU Sch Med Cleveland, Neurol Surg, Cleveland, OH USA;

    Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA|Stanford Univ, Stanford Neurosci Inst, Stanford, CA 94305 USA|Stanford Univ, Bio X Program, Stanford, CA 94305 USA|Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA|Stanford Univ, Dept Neurobiol, Stanford, CA 94305 USA|Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA;

    Dept VA Med Ctr, Ctr Neurorestorat & Neurotechnol, Rehabil R&D Serv, Providence, RI USA|Brown Univ, Sch Engn, Providence, RI 02912 USA|Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA|Harvard Med Sch, Dept Neurol, Boston, MA USA|Brown Univ, Carney Inst Brain Sci, Providence, RI 02912 USA;

    Case Western Reserve Univ, Cleveland, OH 44106 USA|Louis Stokes Cleveland, FES Ctr Excellence, Dept VA Med Ctr, Rehabil R&D Serv, Cleveland, OH 44106 USA;

    Case Western Reserve Univ, Cleveland, OH 44106 USA|Louis Stokes Cleveland, FES Ctr Excellence, Dept VA Med Ctr, Rehabil R&D Serv, Cleveland, OH 44106 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BCI; intracortical brain computer interface; neural decoding; motor control;

    机译:BCI;大脑皮层内计算机接口;神经解码;运动控制;
  • 入库时间 2022-08-18 04:18:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号