首页> 外文期刊>Journal of Muscle Research and Cell Motility >Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure
【24h】

Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure

机译:人心力衰竭中动作电位峰构型,结节质网微结构和t-小管结构改变的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Using a Monte–Carlo model of L-type Ca2+ channel (DHPR) gating, we have examined the effect of changes in the early time course of the action potential as seen in human heart failure on excitation contraction coupling. The time course of DHPR Ca2+ influx was coupled into a simple model of sarcoplasmic reticulum Ca2+ release. Our model shows that the loss of the initial spike in human heart failure should reduce the synchrony of Ca2+ spark production and lead to the appearance of late Ca2+ sparks and greater non-uniformity of intracellular Ca2+. Within the junctional space of the cardiac dyad, a small increase in the mean distance of a DHPR from a RyR results in a marked decrease in the ability of the DHPR-mediated increase in local [Ca2+] concentration to activate RyRs. This suggests that the efficiency of EC coupling may be reduced if changes in micro-architecture develop and such effects have been noted in experimental models of heart failure. High resolution imaging of t-tubules in tachycardia-induced heart failure show deranged t-tubule structure. While in normal human hearts t-tubules run mainly in a radial direction, t-tubules in the heart failure samples were oriented more toward the long axis of the cell. In addition, t-tubules may become dilated and bifurcated. Our data suggest that changes in the micro-architecture of the cell and membrane structures associated with excitation–contraction coupling, combined with changes in early action potential configuration can reduce the efficiency by which Ca2+ influx via DHPRs can activate SR calcium release and cardiac contraction. While the underlying cause of these effects is unclear, our data suggest that geometric factors can play an important role in the pathophysilogy of the human heart in failure.
机译:使用L型Ca2 +通道(DHPR)门控的蒙特卡洛模型,我们检查了人心衰竭中动作电位的早期变化过程对兴奋收缩耦合的影响。将DHPR Ca2 + 流入的时间过程耦合到肌浆网Ca2 + 释放的简单模型中。我们的模型表明,人心力衰竭初始尖峰的消失会降低Ca2 + 火花产生的同步性,并导致后期Ca2 + 火花的出现以及细胞内Ca2 + 。在心脏二分体的交界处,DHPR与RyR的平均距离的小幅增加导致DHPR介导的局部[Ca2 + ]浓度增加激活RyRs的能力显着降低。这表明,如果微体系结构发生变化,并且心力衰竭的实验模型中已注意到这种影响,则可能会降低EC耦合的效率。心动过速诱发的心力衰竭中T管的高分辨率成像显示t管结构错乱。在正常人的心脏中,T管主要在径向延伸,而心力衰竭样本中的T管则更朝向细胞的长轴。此外,T管可能会扩张和分叉。我们的数据表明,与兴奋-收缩偶联相关的细胞和膜结构的微结构变化,以及早期动作电位构型的变化,可以降低通过DHPRs引起的Ca2 + 流入可以激活SR钙释放的效率。和心脏收缩。虽然尚不清楚这些影响的根本原因,但我们的数据表明,几何因素在人心脏衰竭的病理生理中可以发挥重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号