...
首页> 外文期刊>Journal of Micro/Nanolithography,MEMS and MOEMS >Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging
【24h】

Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging

机译:具有双反射面的电热微镜,用于圆周扫描内窥镜成像

获取原文
获取原文并翻译 | 示例

摘要

Optical coherence tomography (OCT) has emerged as a powerful imaging technology due to its cellular or even subcellular resolution (1 to 10 μm) that is, for instance, suitable for early cancer detection.1 However, slow speeds and large sizes of most conventional optical scanning mechanisms limit OCT applications in real-time in vivo endoscopic imaging of internal organs. Furthermore, for intravascular and internal organ applications such as in heart arteries and lung bronchi, full-circumferential scanning (FCS) is desired. Early FCS research efforts focused on spinning the entire optical fiber and its assembly,2 which has the limitations of scanning speed and optical coupling stability. Other FCS–endoscopic OCT (FCS-EOCT) imaging probes also have been developed, such as employing commercially available micromotors to spin a mirror or prism to obtain 360-deg scanning3,4 or using a microelectromechamical systems (MEMS) scratch drive array to generate a 360-deg rotation.5nRecently, scanning MEMS micromirrors have been extensively investigated for biomedical imaging applications due to their advantages of small size, fast scanning speed, and low cost. Micromirrors based on various actuation methods including electrostatic, electromagnetic, and electrothermal actuations have been developed.6,7,8,9,10,11,12,13,14,15 Electrostatic micromirrors are limited by their small scanning ranges. For instance, Piyawattanametha et al.6 demonstrated an electrostatic micromirror with an angular comb drive design and achieved mechanical scan angle (MSA) ±6.2 deg at 55 V. Relatively larger deflection ranges have also been demonstrated, such as an electrostatic micromirror with ±10 deg MSA by Hsu et al.7 and a gimbal-less electrostatic actuator by Milanovic et al. with a maximum MSA of about 25 deg at resonance.8nHowever, to achieve FCS by a single micromirror with dual-reflective surfaces, a larger deflection angle of at least 90 deg MSA is required. An MEMS scratch drive array was proposed in Ref. 5, but the device structure and fabrication are rather complicated. Electromagnetic micromirrors normally provide larger deflection range.9,10,11 For example, up to 65-deg optical scan angle (OSA) was demonstrated by Yalcinkaya et al.,9 and similar designs were used by Microvision, Inc., for high-resolution displays.10 Ji et al. even demonstrated an electromagnetic micromirror with MSA larger than 90 deg.11 However, electromagnetic micromirrors usually require bulky external coils or magnets to generate the electromagnetic field, which limits the miniaturization ability and complicates the endoscope assembly.11,12 On the other hand, electrothermal actuation generally offers large actuation forces and scanning ranges.13,14,15 For example, an electrothermally actuated bimorph micromirror with large OSA over 100 deg has been used for barcode scanner in Ref. 15. In addition, small driving voltages make electrothermal micromirrors preferable for biomedical imaging applications,16,17 and MSAs as large as 124 deg at only 12.5 Vdc have been demonstrated.18 This rotation angle can be increased even further, but the maximum OSA is limited to 180 deg.nIn order to overcome this limitation, we propose to use a micromirror that has both surfaces being highly reflective. The achievable OSA thus can be doubled by utilizing both surfaces. The simple structure of the electrothermal micromirrors makes the fabrication of dual-reflective surfaces relatively easier than that for the electromagnetic micromirrors, which requires magnetic materials to be integrated on the back side of the mirror plate.11 Also there is no external component needed for electrothermal micromirrors. Therefore, it facilitates the assembly and further miniaturization of the imaging endoscopes. In this paper, the dual-reflective micromirror design, fabrication method, and device testing results are presented. A novel FCS-EOCT imaging probe design based on this dual-reflective micromirror is also proposed.
机译:光学相干断层扫描(OCT)由于其细胞或什至亚细胞分辨率(1至10μm)(例如适用于早期癌症检测)而成为一种强大的成像技术。1但是,速度较慢且尺寸较大,大多数常规光学扫描机制限制了OCT在内部器官的实时体内内窥镜成像中的应用。此外,对于诸如心脏动脉和肺支气管的血管内和内脏器官应用,需要全周扫描(FCS)。 FCS的早期研究工作集中在旋转整个光纤及其组件[2],这限制了扫描速度和光耦合稳定性。还开发了其他FCS内窥镜OCT(FCS-EOCT)成像探头,例如使用市售的微型马达旋转镜子或棱镜以获得360度扫描3,4,或使用微机电系统(MEMS)刮擦驱动器阵列生成360度旋转5n。近来,扫描MEMS微镜因其体积小,扫描速度快和成本低等优点而被广泛研究用于生物医学成像应用。已经开发了基于包括静电,电磁和电热致动在内的各种致动方法的微镜。6、7、8、9、10、11、12、13、14、15静电微镜受到其较小的扫描范围的限制。例如,Piyawattanametha等人[6]演示了具有角梳驱动设计的静电微镜,并在55 V时实现了±6.2°deg的机械扫描角。还展示了相对较大的偏转范围,例如±10的静电微镜。 Hsu等人[7]给出了deg MSA和Milanovic等人[7]的无万向节静电致动器。共振时最大MSA约为25°。8n然而,要通过具有双反射面的单个微镜实现FCS,需要至少90°deg的MSA更大的偏转角。参考文献中提出了MEMS刮擦驱动器阵列。如图5所示,但是装置的结构和制造相当复杂。电磁微镜通常会提供较大的偏转范围。9,10,11例如,Yalcinkaya等人[9]演示了高达65度的光学扫描角(OSA),Microvision,Inc.使用了类似的设计来获得高偏转角。分辨率显示。10 Ji等。甚至证明了MSA大于90°的电磁微镜。11但是,电磁微镜通常需要笨重的外部线圈或磁体来产生电磁场,这限制了微型化能力并使内窥镜组件复杂化。11,12另一方面,电热镜致动通常会提供较大的致动力和扫描范围。13、14、15例如,参考文献中的条形码扫描仪已使用电热致动的OSA大于100°的双压电晶片微镜。 15.此外,较小的驱动电压使电热微镜成为生物医学成像应用的首选,16,17和MSA仅在12.5 Vdc时已证明最大124deg。18该旋转角可以进一步增加,但最大OSA为限制为180°n为了克服此限制,我们建议使用两个表面都具有高反射率的微镜。因此,可以通过利用两个表面来使可实现的OSA加倍。电热微镜的简单结构使双反射面的制造比电磁微镜的制造相对容易,而电磁微镜则需要将磁性材料集成在镜板的背面。11而且,电热也不需要外部组件。微镜。因此,它有利于成像内窥镜的组装和进一步的小型化。本文介绍了双反射微镜的设计,制造方法和器件测试结果。还提出了一种基于该双反射微镜的新型FCS-EOCT成像探头设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号