...
首页> 外文期刊>Journal of Materials Science >Native point defects in binary InP semiconductors
【24h】

Native point defects in binary InP semiconductors

机译:二进制InP半导体中的本征点缺陷

获取原文
获取原文并翻译 | 示例

摘要

We present a holistic method to identify stable point defects in InP and the position of their defect states within the experimental band gap using density functional theory. We have calculated the formation energy of the different charge neutral native point defects for both stoichiometric and non-stoichiometric InP by determining the chemical potentials of In and P within the compound correctly from thermodynamic considerations. For stoichiometric InP, we predict phosphorous vacancies and phosphorus antisites to be most probable, among the neutral defects. For In-rich and P-rich compositions, we find indium and phosphorous antisites to be most stable, respectively, when neglecting charges. We then present a careful analysis to identify the defect levels associated with each point defect within the experimental band gap and compare it with existing experiments. By comparing calculations with different cell sizes and with varying band gaps from different exchange–correlation functionals (GGA vs. hybrid functional), we examine the dependence of the defect states on cell size and position of the excited states and analyze their nature and expected position in real systems along with the resulting charges on the defects. Finally, we include a recipe to approximate the Fermi level dependence of the chemical potential of charged defects in binary compounds, allowing calculation of their formation energies. Considering charges, the dominant point defects for stoichiometric InP are +4 and +2 charged indium and phosphorous antisites for Fermi energies 0.4 eV, +1 and +2 charged phosphorous vacancies and antisites for Fermi energies between 0.4 eV and 0.9 eV, +1 and −3 charged indium and phosphorous vacancies between 0.9 and 1.1 eV and −3 and −2 charged indium vacancies and antisites for Fermi energies 1.1 eV, respectively. For non-stoichiometric InP, the respective antisites are constitutional defects in their minimum-energy charge states, depending on the Fermi level.
机译:我们提出了一种使用密度泛函理论确定InP中稳定点缺陷及其缺陷状态在实验带隙中的位置的整体方法。通过从热力学考虑正确确定化合物中In和P的化学势,我们已经计算了化学计量和非化学计量InP的不同电荷中性本征点缺陷的形成能。对于化学计量的InP,我们预测在中性缺陷中最有可能出现磷空位和磷反位。对于富In和富P的组合物,当忽略电荷时,我们发现铟和磷的抗位点分别是最稳定的。然后,我们将进行仔细的分析,以确定与实验带隙内每个点缺陷相关的缺陷水平,并将其与现有实验进行比较。通过比较不同单元大小和不同交换相关函数(GGA与混合函数)的带隙变化的计算,我们检查了缺陷状态对单元大小和激发态位置的依赖性,并分析了它们的性质和预期位置在实际系统中,以及由此产生的缺陷费用。最后,我们提供了一种配方,以近似二元化合物中带电缺陷的化学势的费米能级依赖性,从而可以计算其形成能。考虑到电荷,化学计量InP的主要点缺陷是费米能<0.4 eV的+4和+2带电的铟和磷反位,0.4 eV和0.9 eV +1之间的费米能的+1和+2带电的磷空位和费米能的反位和-3分别在0.9和1.1 eV之间带电的铟和磷空位,以及-3和-2分别对费米能大于1.1 eV的带电铟空位和反位。对于非化学计量的InP,取决于费米能级,相应的抗位点在其最小能量电荷状态下是结构缺陷。

著录项

  • 来源
    《Journal of Materials Science 》 |2012年第21期| p.7482-7497| 共16页
  • 作者单位

    Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA;

    Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA;

    Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA;

    Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号