...
首页> 外文期刊>Journal of Materials Science >Simulation of doping levels and deep levels in InGaN-based single-junction solar cell
【24h】

Simulation of doping levels and deep levels in InGaN-based single-junction solar cell

机译:InGaN基单结太阳能电池中掺杂水平和深水平的模拟

获取原文
获取原文并翻译 | 示例

摘要

Doping levels and deep levels in In0.65Ga0.35N single junction solar cells are studied theoretically, and simulation of cell properties is performed. Effective-mass approximation (EMA) is used to calculate the ionization energies and the radius of ground-state orbit for donors and acceptors in wurtzite In0.65Ga0.35N. The ionization energies of donors and acceptors are estimated to be about 15.5 and 92.9 meV, respectively. The validity of EMA to wurtzite InGaN alloy has also been discussed. AMPS-1D software is used to simulate the doping levels and deep levels in In0.65Ga0.35N single junction solar cells with assumption that the deep level is located at the middle of In0.65Ga0.35N band gap where the recombination is maximum. Band structure and concentration distributions of equilibrium carriers are obtained. The influence of deep level recombination on efficiency is estimated to be about 9.6% while recombination center concentration is 5 × 1015 cm−3, and capture cross section is 10−13 cm2. The simulated results show that the increase of reverse saturation current and the decrease of open-circuit voltages (V oc) and fill factor (FF) are mainly responsible for the decrease of the efficiency. Short-circuit current density (J sc) is found to be not sensitive to deep level concentrations and capture cross sections. As the crystal quality of InGaN and p-type doping of In-rich InGaN may be the most important challenges for InGaN solar cells, this study is useful for the study of InGaN-based super-high efficiency solar cells.
机译:从理论上研究了In0.65 Ga0.35 N单结太阳能电池的掺杂能级和深能级,并对其性能进行了仿真。有效质量近似(EMA)用于计算纤锌矿In0.65 Ga0.35 N中供体和受体的电离能和基态轨道半径。供体和受体的电离能分别估计为约15.5和92.9 meV。还讨论了EMA对纤锌矿InGaN合金的有效性。 AMPS-1D软件用于模拟In0.65 Ga0.35 N单结太阳能电池中的掺杂能级和深能级,假定该深能级位于In0.65 < /sub>Ga0.35N带隙,其中重组最大。获得了平衡载流子的能带结构和浓度分布。深层重组对效率的影响估计约为9.6%,而重组中心浓度为5×1015 cm−3 ,捕获截面为10-13 cm2 。仿真结果表明,反向饱和电流的增加以及开路电压(V oc )和填充因子(FF)的降低是造成效率降低的主要原因。发现短路电流密度(J sc )对深能级浓度和俘获截面不敏感。由于InGaN的晶体质量和富InGaN的p型掺杂可能是InGaN太阳能电池面临的最重要挑战,因此该研究对于基于InGaN的超高效太阳能电池的研究很有用。

著录项

  • 来源
    《Journal of Materials Science 》 |2012年第11期| p.4595-4603| 共9页
  • 作者单位

    Department of Physics, Xiamen University, Xiamen, 361005, Fujian, People’s Republic of China;

    Department of Physics, Xiamen University, Xiamen, 361005, Fujian, People’s Republic of China;

    Department of Physics, Xiamen University, Xiamen, 361005, Fujian, People’s Republic of China;

    Department of Physics, Xiamen University, Xiamen, 361005, Fujian, People’s Republic of China;

    Department of Physics, Xiamen University, Xiamen, 361005, Fujian, People’s Republic of China;

    Department of Physics, Xiamen University, Xiamen, 361005, Fujian, People’s Republic of China;

    Department of Physics, Xiamen University, Xiamen, 361005, Fujian, People’s Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号