首页> 外文期刊>Journal of materials science >Effect of hyaluronic acid incorporation method on the stability and biological properties of polyurethane-hyaluronic acid biomaterials
【24h】

Effect of hyaluronic acid incorporation method on the stability and biological properties of polyurethane-hyaluronic acid biomaterials

机译:透明质酸掺入方法对聚氨酯-透明质酸生物材料稳定性和生物学性质的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk versus surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies.
机译:小直径血管移植物的高失败率继续推动解决这一临床问题的新材料和修饰策略的发展,通常通过对各种生物材料进行基于表面的修饰来实现生物分子的结合。在这项工作中,我们研究了将生物分子掺入聚氨酯(PU)聚合物中的方法(即本体改性与表面改性)在血管应用中是否影响生物材料性能。具体地,通过本体共聚或共价表面束缚将透明质酸(HA)结合到聚(醚氨基甲酸酯)中,并且得到的PU-HA材料在物理和生物学特性上均具有特征。通过表面或本体方法用HA改性PU产生的材料,在静态条件下进行测试时,在支持内皮细胞培养的同时,其抵抗蛋白质吸附,血小板粘附和细菌粘附的能力没有显着差异。但是,只有大块改性的PU-HA材料在材料暴露于流动后才能够完全保留这些特性,这表明其具有出色的保留掺入HA的能力,并使酶降解,蛋白质吸附,血小板粘附和细菌粘附最小化。因此,尽管在生物分子附着的背景下很少采用本体方法,但是这些结果表明,在本体上而非表面上掺入HA时,PU-HA的性能有所提高。尽管仅在PU-HA的背景下进行了探索,但这些实验揭示的发现对于血管移植物修饰策略的设计和评估具有更广泛的意义。

著录项

  • 来源
    《Journal of materials science》 |2014年第2期|487-498|共12页
  • 作者单位

    Materials Science Program, University of Wisconsin, Madison,WI, USA;

    School of Pharmacy, University of Wisconsin, Madison, WI,USA;

    Materials Science Program, University of Wisconsin, Madison,WI, USA,Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, #2152, Madison,WI 53706, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号