AbstractMorphology control of electrode material is critical for high performance supercapacitors. The synthesis of shape'/> Shape-controlled synthesis of nickel-cobalt-sulfide with enhanced electrochemical activity
首页> 外文期刊>Journal of materials science >Shape-controlled synthesis of nickel-cobalt-sulfide with enhanced electrochemical activity
【24h】

Shape-controlled synthesis of nickel-cobalt-sulfide with enhanced electrochemical activity

机译:形状控制合成的镍钴硫化物具有增强的电化学活性

获取原文
获取原文并翻译 | 示例
       

摘要

AbstractMorphology control of electrode material is critical for high performance supercapacitors. The synthesis of shape-controlled materials is helpful to design advanced electrode materials for supercapacitors. Herein, we prepared two types of NiCo2S4with nano-bud and nano-mesh morphologies under hydrothermal conditions by facile controlling the reaction time. These materials display morphology-dependent electrochemical activity. Electrochemical measurements showed that the nano-mesh-like NiCo2S4demonstrate the superior pseudocapacitive performance with a high specific capacitance (3.00 F cm−2or 1250 F g−1at 2 mA cm−2) and a favorable rate capability (77.8% from 2 to 25 mA cm−2). Moreover, the specific capacitance remains 80% of its initial value after 5000 cycles even at high current density of 20 mA cm−2. The mesh-like NiCo2S4also displays a low overpotentials of 299 mV at the current density of 30 mA cm−2, showing better performance in electrochemical oxygen evolution reaction.
机译: 摘要 电极材料的形态控制对于高性能超级电容器至关重要。形状控制材料的合成有助于设计用于超级电容器的高级电极材料。在本文中,我们通过控制反应时间,在水热条件下制备了具有纳米芽和纳米网状形态的两种NiCo 2 S 4 。这些材料显示出形态学依赖性的电化学活性。电化学测量表明,纳米网状的NiCo 2 S 4 具有较高的比电容(3.00F·cm −2 或1250 F g <上标> -1 在2 mA cm <上标> -2 )和良好的速率能力(从2到25mA cm <上标> -2 )。而且,即使在20 mA cm -2 的高电流密度下,比电容在5000次循环后仍保持其初始值的80%。网状NiCo 2 S 4 在30mA·cm -2 的电流密度下也显示出299mV的低过电位。氧分解反应中的化学性能。

著录项

  • 来源
    《Journal of materials science》 |2018年第3期|2251-2258|共8页
  • 作者单位

    Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology;

    Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology;

    School of Chemistry and Materials Engineering, Huizhou University;

    Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology;

    Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology;

    Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology;

    Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology;

    Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:43:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号