首页> 外文期刊>Journal of Materials Research >Predictive kinetics-based model for shock-activated reaction synthesis of Ti_3SiC_2
【24h】

Predictive kinetics-based model for shock-activated reaction synthesis of Ti_3SiC_2

机译:基于预测动力学的Ti_3SiC_2冲击活化反应合成模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A kinetics model based on mass and heat transport has been developed for Ti_3SiC_2 formation via shock-activated reaction synthesis of powder precursors. The model allows prediction of heat treatment conditions under which an otherwise steady-state reaction is taken over by a "run-away" combustion-type reaction during post-shock reaction synthesis of Ti_3SiC_2. Shock compression of Ti, SiC, and graphite precursors generates a densely packed highly activated state of reactants, which lowers the activation energy and results in an increased rate of formation of Ti_3SiC_2 at a lower temperature and in shorter times. The predictive model correlated with experimental results of fraction reacted as a function of time at heat-treatment temperatures of 1400 and 1600 deg C illustrates an increased rate of reaction due to lowering activation energy, which also results in the reaction at 1600 deg C being taken over by a "run-away" combustion-type reaction, as the rate of heat release due to reaction exceeds the rate of heat dissipation through the compact. Correlation of the model with experimental results illustrates that the predictive model can be used to optimize reaction synthesis conditions in shock-densified compacts of Ti_3SiC_2-forming powder precursors, to better understand the processes leading to a steady-state reaction being taken over by the combustion mode.
机译:建立了基于质量和热传输的动力学模型,用于通过粉末前驱物的冲击活化反应合成来形成Ti_3SiC_2。该模型允许预测热处理条件,在此条件下,在Ti_3SiC_2的休克后反应合成过程中,稳态反应由“失控”燃烧型反应接管。 Ti,SiC和石墨前体的冲击压缩会产生紧密堆积的反应物高度活化态,这会降低活化能并导致在较低的温度和较短的时间内增加Ti_3SiC_2的形成速率。与在1400和1600℃的热处理温度下反应的馏分随时间变化的实验结果相关的预测模型说明,由于活化能降低,反应速率增加,这也导致在1600℃进行反应通过“失控”燃烧型反应,因为反应引起的放热速度超过了通过压块的散热速度。该模型与实验结果的相关性表明,该预测模型可用于优化Ti_3SiC_2形成粉末前体的冲击致密成形体中的反应合成条件,从而更好地理解导致稳态反应被燃烧控制的过程模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号