首页> 外文学位 >Shock-activated reaction synthesis and high pressure response of titanium-based ternary carbide and nitride ceramics.
【24h】

Shock-activated reaction synthesis and high pressure response of titanium-based ternary carbide and nitride ceramics.

机译:钛基三元碳化物和氮化物陶瓷的冲击活化反应合成和高压响应。

获取原文
获取原文并翻译 | 示例

摘要

The objectives of this study were to (a) investigate the effect of shock activation of precursor powders for solid-state reaction synthesis of Ti-based ternary ceramics and (b) to determine the high pressure phase stability and Hugoniot properties of Ti3SiC2. Dynamically densified compacts of Ti, SiC, and graphite precursor powders and Ti and AlN precursor powders were used to study the shock-activated formation of Ti 3SiC2 and Ti2AlN ternary compounds, respectively, which are considered to be novel ceramics having high stiffness but low hardness. Gas gun and explosive loading techniques were used to obtain a range of loading conditions resulting in densification and activation. Measurements of fraction reacted as a function of time and temperature and activation energies obtained from DTA experiments were used to determine the degree of activation caused by shock compression and its subsequent effect on the reaction mechanisms and kinetics. In both systems, shock activation led to an accelerated rate of reaction at temperatures less than 1600°C and, above that temperature, it promoted the formation of almost 100% of the ternary compound. A kinetics-based mathematical model based on mass and thermal transport was developed to predict the effect of shock activation and reaction synthesis conditions that ensure formation of the ternary compounds. Model predictions revealed a transition temperature above which the reaction is taken over by the “run-away” combustion-type mode. The high pressure phase stability of pre-alloyed Ti 3SiC2 compound was investigated by performing Hugoniot shock and particle velocity measurements using the facilities at the National Institute for Materials Science (Tsukuba, Japan). Experiments performed at pressures of 95–120 GPa showed that the compressibility of Ti3SiC 2 at these pressures deviates from the previously reported compressibility of the material under static high pressure loading. The deviation in compressibility behavior is indicative of the transformation of the Ti3 SiC2 ceramic to a high pressure, high density phase.
机译:这项研究的目的是(a)研究前体粉末的震动活化对Ti基三元陶瓷的固相反应合成的影响,以及(b)确定Ti 的高压相稳定性和Hugoniot性能3 SiC 2 。用Ti,SiC和石墨前驱体粉末以及Ti和AlN前驱体粉末的动态致密成型体研究了Ti 3 SiC 2 和Ti 2 AlN三元化合物分别被认为是具有高刚度但低硬度的新型陶瓷。使用气枪和炸药加载技术来获得一定范围的加载条件,从而导致致密化和活化。根据时间和温度以及从DTA实验获得的活化能的变化,测量反应分数,以测定由冲击压缩引起的活化程度及其对反应机理和动力学的后续影响。在这两个系统中,冲击活化都会导致在低于1600°C的温度下加快反应速度,而在该温度以上,它促进了几乎100%的三元化合物的形成。建立了基于质量和热传递的基于动力学的数学模型,以预测冲击活化和反应合成条件的影响,以确保三元化合物的形成。模型预测显示出转变温度,在该转变温度以上,反应由“失控”燃烧类型模式接管。通过使用国立材料科学研究所(Tsukuba)的设施进行Hugoniot冲击和粒子速度测量,研究了预合金Ti 3 SiC 2 化合物的高压相稳定性。 , 日本)。在95–120 GPa压力下进行的实验表明,在这些压力下Ti 3 SiC 2 的可压缩性与先前报道的材料在静态高压载荷下的可压缩性不同。可压缩性的偏差表明Ti 3 SiC 2 陶瓷转变为高压,高密度相。

著录项

  • 作者

    Jordan, Jennifer Lynn.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号