首页> 外文期刊>Journal of Materials Research >Microstructure and thermoelectric properties of InSb compound with nonsoluble NiSb in situ precipitates
【24h】

Microstructure and thermoelectric properties of InSb compound with nonsoluble NiSb in situ precipitates

机译:不溶性NiSb原位沉淀InSb化合物的微观结构和热电性能

获取原文
获取原文并翻译 | 示例
           

摘要

The microstructure and thermoelectric properties of InSb-NiSb composite system are investigated. NiSb, ranging from micro- to nanoscale, is introduced as a nonsoluble second phase in the InSb matrix by using the water quenching method. The morphology of the second phase is adjusted by varying the composition from hypoeutectic to hypereutectic alloys. The eutectic composite with a semiconducting InSb matrix and a metallic NiSb fiber on the order of 100-nm diameter is obtained. Melt spinning (MS) is applied to the eutectic composition to change the NiSb dispersion phase to around 200-nm diameter sphere. Transport properties, including Seebeck coefficient, resistivity, Hall coefficient, and thermal conductivity, are measured from 80 to 630 K. Compared to the water quenched (WQ) eutectic sample, the MS process results in a slight increase in the carrier concentration but a remarkable reduction in the mobility and thermal conductivity. Compared to the InSb matrix, ZT of the samples with the NiSb second phase is lower. For the eutectic samples, ZT is significantly reduced after the MS process because of the loss in mobility. ZT of the WQ InSb matrix is the highest in all the samples, ~0.5 at 600 K.
机译:研究了InSb-NiSb复合体系的微观结构和热电性能。通过使用水淬方法,将微米级至纳米级的NiSb作为不溶性第二相引入InSb基质中。第二相的形态可通过改变成分从次共晶合金到过共晶合金来调整。得到具有半导体InSb基体和金属NiSb纤维的直径约100nm的共晶复合物。将熔体纺丝(MS)应用于共晶成分,以将NiSb分散相更改为直径约200 nm的球体。传输特性,包括塞贝克系数,电阻率,霍尔系数和热导率,在80至630 K之间测量。与水淬(WQ)低共熔样品相比,MS过程导致载流子浓度略有增加,但引人注目迁移率和导热率降低。与InSb基质相比,具有NiSb第二相的样品的ZT较低。对于共晶样品,由于迁移率降低,MS处理后ZT显着降低。 WQ InSb矩阵的ZT在所有样本中最高,在600 K时约为0.5。

著录项

  • 来源
    《Journal of Materials Research》 |2013年第24期|3394-3400|共7页
  • 作者单位

    Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China and Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China;

    Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China and Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号