...
首页> 外文期刊>Journal of Materials Research >Atomistic consideration of earth-abundant chalcogenide materials for photovoltaics: Kesterite and beyond
【24h】

Atomistic consideration of earth-abundant chalcogenide materials for photovoltaics: Kesterite and beyond

机译:光伏中富含稀土的硫族化物材料的原子学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Despite the potential as a promising alternative to CdTe and Cu(In,Ga)Se-2, the kesterite compound Cu2ZnSn(S,Se)(4) (CZTSSe) presents a critical challenge mainly from its high open-circuit voltage (V-oc) deficit. Indeed, the V-oc of the record CZTSSe solar cell to date has accounted for only 61% of that calculated by the Shockley-Queisser limit, whose origin can be ascribed to nonradiative recombination from a high density of defects and secondary phases. Therefore, an atomistic understanding and characterization of CZTSSe is highly essential to overcoming the current shortcomings in kesterite. This review discusses the advanced characterization techniques for studying the intrinsic properties of kesterite at a nanometer scale. Moreover, a cation substitution with an ionic mismatch around constituents is recognized as an effective route to address the fundamental limit (i.e., the cationic disorder) in CZTSSe. Here, we review recent studies on a novel chalcogenide Cu2BaSn(S,Se)(4) that substitutes Zn with Ba and results in less cationic disordering.
机译:尽管有潜力作为CdTe和Cu(In,Ga)Se-2的有前途的替代品,但锂钾长石化合物Cu2ZnSn(S,Se)(4)(CZTSSe)仍然面临着严峻的挑战,主要是因为其高开路电压(V oc)赤字。实际上,迄今为止,记录的CZTSSe太阳能电池的V-oc仅占Shockley-Queisser极限所计算的V-oc的61%,该极限的起因可归因于高密度的缺陷和次生相的非辐射复合。因此,对CZTSSe的原子性理解和表征对于克服目前的硅藻土缺陷至关重要。这篇评论讨论了先进的表征技术,用于研究纳米级的kesterite的固有性质。此外,在组分周围具有离子错配的阳离子取代被认为是解决CZTSSe中基本极限(即,阳离子紊乱)的有效途径。在这里,我们审查对新型硫族元素Cu2BaSn(S,Se)(4)的最新研究,该元素可以将Zn替换为Ba并减少阳离子的混乱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号