...
首页> 外文期刊>Journal of Manufacturing Processes >Influence of strain, temperature, and strain rate on interfacial structure and strength of AZ31BMg/6063Al formed by plastic deformation bonding
【24h】

Influence of strain, temperature, and strain rate on interfacial structure and strength of AZ31BMg/6063Al formed by plastic deformation bonding

机译:应变,温度和应变率对由塑性变形粘合形成的AZ31bmg / 6063Al界面结构和强度的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Strain, and temperature, and strain rate, are critical parameters in many joining and forming processes of Al/Mg alloys hybrid structures/components, but the relation between those parameters and interfacial bonding strength remains to be quantified. In the present study, influences of true strain (0.29-0.92), strain rate (10(-3)-10 s(-1)), and temperature (325-443 degrees C) on microstructure and interfacial bonding strength of AZ31BMg/6063Al formed via plastic deformation were studied, and mechanism-based constitutive equations describing the relation between those parameters and interfacial bonding strength were first developed. Mg and Al alloys cannot be bonded at true strains 0.29 and 0.51 lower than theoretical threshold true strains; while metallurgical bonding appears at Al/Mg interfaces as the true strain is increased to 0.92. When the bonding interface is not fully bonded, a decreased strain rate or an increased temperature helps to improve the metallurgical bonding area, resulting in the enhancement of bonding strength. However, once the bonding interface has been fully bonded, a decrease in strain rate or an increase in temperature leads to an increase in intermetallic compounds (IMCs) thickness, thus almost linearly reducing bonding strength. The IMCs thickness has an exponential relation with time and an Arrhenius relation with temperature. The interfacial bonding strength is governed by both the bonding degree and IMCs thickness. The combination of a large strain rate and a high temperature (below constitutional liquation) helps to form a fully bonded interface with a small IMCs thickness, thus obtaining the maximum bonding strength. The present research findings and developed models provide guidance for parameters optimization in joining or forming processes of Al/Mg alloys hybrid components via plastic deformation.
机译:菌株和温度和应变率是Al / Mg合金杂交结构/组分的许多连接和形成方法中的关键参数,但这些参数与界面粘合强度之间的关系仍然是量化的。在本研究中,真正应变(0.29-0.92),应变率(10(-3)-10秒(-1))和温度(325-443℃)的影响,AZ31bmg /的界面粘合强度/研究了通过塑性变形形成的6063A1,首先开发了描述这些参数与界面粘合强度之间关系的机理的组成方程。 Mg和Al合金不能在真正的菌株0.29和0.51低于理论阈值真正菌株时键合;虽然在Al / Mg界面上出现冶金键,但由于真正的应变增加到0.92。当粘合界面未完全粘合时,应变速率降低或增加的温度有助于改善冶金粘合面积,从而提高粘合强度。然而,一旦粘合界面已经完全粘合,应变速率的降低或温度的增加导致金属间化合物(IMCs)厚度的增加,因此几乎线性降低粘合强度。 IMCS厚度具有与温度的时间和Arrhenius关系的指数关系。界面粘合强度受粘合度和IMCS厚度的控制。大应变率和高温(下面的结构)的组合有助于形成具有小的IMCS厚度的完全粘合的界面,从而获得最大粘合强度。本研究发现和开发模型为参数优化通过塑性变形提供了参数优化的指导,可通过塑性变形形成Al / Mg合金杂种组分的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号