...
首页> 外文期刊>Journal of Manufacturing Processes >Indirect additive manufacturing based casting of a periodic 3D cellular metal - Flow simulation of molten aluminum alloy
【24h】

Indirect additive manufacturing based casting of a periodic 3D cellular metal - Flow simulation of molten aluminum alloy

机译:基于间接增材制造的周期性3D多孔金属铸造-熔融铝合金的流动模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Direct-metal additive manufacturing (AM) processes such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM) methods are being used to fabricate three dimensional (3D) metallic mesostruc-tures with a laser or electron beam over metal powder beds. In spite of their good manufacturability on 3D network structures, the direct AM processes still appear to have disadvantages - limited selection of materials, high thermal stress traced to the high local energy source, poor surface finish, anisotropic properties, and high cost on powder materials and manufacturing with high power beams. As an alternative method to manufacture 3D network cellular metals, we suggest and implement an indirect AM method combining an inkjet 3D printing of wax and metal casting - Indirect AM based Casting (IAM Casting). Due to the high surface area of the cellular structural mold exposed to an ambient temperature during casting, flow and solidification of a molten metal appear to be a strong function of temperature. Therefore, viscosity, density, and thermal conductivity of a molten metal and mold may need to be provided as a function of temperature for characterizing flow and solidification. The objective of this study is to test the hypothesis that casting of a molten metal into a cellular structural mold is highly sensitive to temperature that temperature-dependent viscosity, density, and thermal conductivity should be implemented for the simulations on flow and solidification of a molten metal. A transient flow and heat-transfer analysis of a molten aluminum alloy, AC4C, is conducted through a 3D cellular network mold made of zircon. Solidification of AC4C through the cellular structural mold during casting is simulated with temperature-dependent properties of the molten metal and mold over a range of running temperature using a user defined function (UDF) of ANSYS/FLUENT. We found that solidification is sensitive to viscosity and thermal conductivity of AC4C and the zircon mold, which are a strong function of temperature. The simulation with constant thermal and physical properties of AC4C and the zircon mold overestimates the solidification time with an error of 20% compared to the one with the temperature-dependent properties.
机译:直接金属增材制造(AM)工艺,例如选择性激光熔化(SLM)和电子束熔化(EBM)方法,正被用于在金属粉末床上用激光或电子束制造三维(3D)金属介观结构。尽管在3D网络结构上具有良好的可制造性,但直接AM工艺仍然存在缺点-材料选择有限,追溯到高局部能源的高热应力,不良的表面光洁度,各向异性和粉末材料的高成本和高功率光束的制造。作为制造3D网络多孔金属的另一种方法,我们建议并实施一种间接AM方法,该方法结合了蜡和金属铸件的喷墨3D打印-基于间接AM的铸造(IAM铸造)。由于蜂窝结构模具的高表面积在铸造期间暴露于环境温度,因此熔融金属的流动和凝固似乎是温度的强函数。因此,可能需要根据温度来提供熔融金属和铸模的粘度,密度和导热率,以表征流动和凝固。这项研究的目的是检验以下假设,即将熔融金属浇铸到蜂窝结构模具中对温度高度敏感,因此必须对与温度相关的粘度,密度和导热系数进行仿真,以模拟熔融金属的流动和凝固金属。通过锆石制成的3D蜂窝网络模具对熔融铝合金AC4C进行瞬态流动和传热分析。使用ANSYS / FLUENT的用户定义函数(UDF),可以在浇铸过程中通过多孔结构模具对AC4C的凝固过程进行模拟,模拟了熔融金属和模具在一定运行温度范围内随温度变化的特性。我们发现,固化对AC4C和锆石模具的粘度和导热率敏感,而粘度和导热率是温度的强函数。 AC4C和锆石模具具有恒定的热和物理特性的模拟与具有温度依赖性的特性相比,高估了凝固时间,其误差为20%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号